Thermal tuning of infrared resonant absorbers based on hybrid gold-VO<inf>2</inf> nanostructures

Hasan Kocer, Serkan Butun, Berker Banar, Kevin Wang, Sefaattin Tongay, Junqiao Wu, Koray Aydin

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO<inf>2</inf>) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO<inf>2</inf> nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO<inf>2</inf> (68°C). Phase change materials such as VO<inf>2</inf> deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

Original languageEnglish (US)
Article number161104
JournalApplied Physics Letters
Volume106
Issue number16
DOIs
StatePublished - Apr 20 2015

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this