Theoretical study of mixing energetics in homovalent fluorite-structured oxide solid solutions

Vitaly Alexandrov, Niels Grønbech-Jensen, Alexandra Navrotsky, Mark Asta

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Mixing energies (ΔHmix) for fluorite-structured (Zr 1-xCex)O2 and (Th1-xCe x)O2 solid solutions are computed from density functional theory (DFT), employing cluster-expansion (CE), special-quasirandom-structure (SQS), and continuum-elasticity approaches. These systems are of interest as models for actinide-dioxide mixtures, due to the availability of calorimetric data which allows a direct assessment of the accuracy of the different computational methods for calculating ΔHmix in such fluorite-structured solid solutions. The DFT-based SQS and CE results for solid solutions with random configurational disorder are in very good agreement, and are used along with the calorimetry data to test the accuracy of a linear-elasticity model which allows predictions of the ΔHmix under the assumption that the dominant contribution in these homovalent solid solutions arises from elastic strain energy. The linear-elasticity models describe the mixing energies to within an accuracy of approximately 2 and 0.1 kJ/mol for the Zr and Th based systems, respectively. The excellent accuracy for the ThO2-based system is interpreted to result from the smaller size mismatch, and corresponding high accuracy of the linear elasticity approximation. We thus apply elasticity theory to estimate the magnitudes of ΔHmix for (Th1-xMx)O2 and (U1-xMx)O2 actinide-dioxide solid solutions, with M = U, Th, Ce, Np, Pu and Am, for which the degree of size mismatch is comparable to that in (Th1-xCex)O2; the results yield elastic contributions to ΔHmix with a maximum magnitude of 3 kJ/mol.

Original languageEnglish (US)
Pages (from-to)292-297
Number of pages6
JournalJournal of Nuclear Materials
Volume444
Issue number1-3
DOIs
StatePublished - 2014
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Materials Science(all)
  • Nuclear Energy and Engineering

Fingerprint Dive into the research topics of 'Theoretical study of mixing energetics in homovalent fluorite-structured oxide solid solutions'. Together they form a unique fingerprint.

Cite this