TY - JOUR

T1 - Theoretical study of mixing energetics in homovalent fluorite-structured oxide solid solutions

AU - Alexandrov, Vitaly

AU - Grønbech-Jensen, Niels

AU - Navrotsky, Alexandra

AU - Asta, Mark

N1 - Funding Information:
This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001089. This work made use of resources of the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

PY - 2014

Y1 - 2014

N2 - Mixing energies (ΔHmix) for fluorite-structured (Zr 1-xCex)O2 and (Th1-xCe x)O2 solid solutions are computed from density functional theory (DFT), employing cluster-expansion (CE), special-quasirandom-structure (SQS), and continuum-elasticity approaches. These systems are of interest as models for actinide-dioxide mixtures, due to the availability of calorimetric data which allows a direct assessment of the accuracy of the different computational methods for calculating ΔHmix in such fluorite-structured solid solutions. The DFT-based SQS and CE results for solid solutions with random configurational disorder are in very good agreement, and are used along with the calorimetry data to test the accuracy of a linear-elasticity model which allows predictions of the ΔHmix under the assumption that the dominant contribution in these homovalent solid solutions arises from elastic strain energy. The linear-elasticity models describe the mixing energies to within an accuracy of approximately 2 and 0.1 kJ/mol for the Zr and Th based systems, respectively. The excellent accuracy for the ThO2-based system is interpreted to result from the smaller size mismatch, and corresponding high accuracy of the linear elasticity approximation. We thus apply elasticity theory to estimate the magnitudes of ΔHmix for (Th1-xMx)O2 and (U1-xMx)O2 actinide-dioxide solid solutions, with M = U, Th, Ce, Np, Pu and Am, for which the degree of size mismatch is comparable to that in (Th1-xCex)O2; the results yield elastic contributions to ΔHmix with a maximum magnitude of 3 kJ/mol.

AB - Mixing energies (ΔHmix) for fluorite-structured (Zr 1-xCex)O2 and (Th1-xCe x)O2 solid solutions are computed from density functional theory (DFT), employing cluster-expansion (CE), special-quasirandom-structure (SQS), and continuum-elasticity approaches. These systems are of interest as models for actinide-dioxide mixtures, due to the availability of calorimetric data which allows a direct assessment of the accuracy of the different computational methods for calculating ΔHmix in such fluorite-structured solid solutions. The DFT-based SQS and CE results for solid solutions with random configurational disorder are in very good agreement, and are used along with the calorimetry data to test the accuracy of a linear-elasticity model which allows predictions of the ΔHmix under the assumption that the dominant contribution in these homovalent solid solutions arises from elastic strain energy. The linear-elasticity models describe the mixing energies to within an accuracy of approximately 2 and 0.1 kJ/mol for the Zr and Th based systems, respectively. The excellent accuracy for the ThO2-based system is interpreted to result from the smaller size mismatch, and corresponding high accuracy of the linear elasticity approximation. We thus apply elasticity theory to estimate the magnitudes of ΔHmix for (Th1-xMx)O2 and (U1-xMx)O2 actinide-dioxide solid solutions, with M = U, Th, Ce, Np, Pu and Am, for which the degree of size mismatch is comparable to that in (Th1-xCex)O2; the results yield elastic contributions to ΔHmix with a maximum magnitude of 3 kJ/mol.

UR - http://www.scopus.com/inward/record.url?scp=84886994689&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84886994689&partnerID=8YFLogxK

U2 - 10.1016/j.jnucmat.2013.10.001

DO - 10.1016/j.jnucmat.2013.10.001

M3 - Article

AN - SCOPUS:84886994689

VL - 444

SP - 292

EP - 297

JO - Journal of Nuclear Materials

JF - Journal of Nuclear Materials

SN - 0022-3115

IS - 1-3

ER -