The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion

J. E.C. Scully, P. M. Schenk, J. C. Castillo-Rogez, D. L. Buczkowski, D. A. Williams, J. H. Pasckert, K. D. Duarte, V. N. Romero, L. C. Quick, M. M. Sori, M. E. Landis, C. A. Raymond, A. Neesemann, B. E. Schmidt, H. G. Sizemore, C. T. Russell

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater’s bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies.

Original languageEnglish (US)
Article number3680
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion'. Together they form a unique fingerprint.

Cite this