The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.

Rebecca A. Parker, Sandeep Negi, Tyler Davis, Edward W. Keefer, Harvey Wiggins, Paul A. House, Bradley Greger

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Micro-electrode arrays (MEAs) have been used in a variety of intracortical neural prostheses. While intracortical MEAs have demonstrated their utility in neural prostheses, in many cases MEA performance declines after several months to years of in vivo implantation. The application of carbon nanotubes (CNTs) may increase the functional longevity of intracortical MEAs through enhanced biocompatibility and charge injection properties. An MEA metalized with platinum (Pt) on all electrodes had a CNT coating applied to the electrodes on half of the array. This Pt/Pt-CNT MEA was implanted into feline motor cortex for >1 year. Recordings of action potentials and 1 kHz impedance measurements were made on all electrodes to evaluate device functionality. Additionally, electromyogram (EMG) responses were evoked using micro-stimulation via the MEA to measure device performance. These metrics were compared between Pt and Pt-CNT electrodes. There was no significant difference in the data acquisition or micro-stimulation performance of Pt and the Pt-CNT electrodes. However, impedances were lower on the Pt-CNT electrodes. These results demonstrate the functionality of CNT coatings during chronic in vivo implantation. The lower impedances suggest that for microstimulation applications CNT coatings may impart enhanced interface properties.

Original languageEnglish (US)
Pages (from-to)791-794
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Volume2012
StatePublished - 2012
Externally publishedYes

Fingerprint

Carbon Nanotubes
Microelectrodes
Carbon nanotubes
Electrodes
Platinum
Neural Prostheses
Neural prostheses
Electric Impedance
Coatings
Equipment and Supplies
Charge injection
Felidae
Motor Cortex
Electromyography
Biocompatibility
Action Potentials
Data acquisition

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{11b719c289704b628f71e3cb7816f2f8,
title = "The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.",
abstract = "Micro-electrode arrays (MEAs) have been used in a variety of intracortical neural prostheses. While intracortical MEAs have demonstrated their utility in neural prostheses, in many cases MEA performance declines after several months to years of in vivo implantation. The application of carbon nanotubes (CNTs) may increase the functional longevity of intracortical MEAs through enhanced biocompatibility and charge injection properties. An MEA metalized with platinum (Pt) on all electrodes had a CNT coating applied to the electrodes on half of the array. This Pt/Pt-CNT MEA was implanted into feline motor cortex for >1 year. Recordings of action potentials and 1 kHz impedance measurements were made on all electrodes to evaluate device functionality. Additionally, electromyogram (EMG) responses were evoked using micro-stimulation via the MEA to measure device performance. These metrics were compared between Pt and Pt-CNT electrodes. There was no significant difference in the data acquisition or micro-stimulation performance of Pt and the Pt-CNT electrodes. However, impedances were lower on the Pt-CNT electrodes. These results demonstrate the functionality of CNT coatings during chronic in vivo implantation. The lower impedances suggest that for microstimulation applications CNT coatings may impart enhanced interface properties.",
author = "Parker, {Rebecca A.} and Sandeep Negi and Tyler Davis and Keefer, {Edward W.} and Harvey Wiggins and House, {Paul A.} and Bradley Greger",
year = "2012",
language = "English (US)",
volume = "2012",
pages = "791--794",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.

AU - Parker, Rebecca A.

AU - Negi, Sandeep

AU - Davis, Tyler

AU - Keefer, Edward W.

AU - Wiggins, Harvey

AU - House, Paul A.

AU - Greger, Bradley

PY - 2012

Y1 - 2012

N2 - Micro-electrode arrays (MEAs) have been used in a variety of intracortical neural prostheses. While intracortical MEAs have demonstrated their utility in neural prostheses, in many cases MEA performance declines after several months to years of in vivo implantation. The application of carbon nanotubes (CNTs) may increase the functional longevity of intracortical MEAs through enhanced biocompatibility and charge injection properties. An MEA metalized with platinum (Pt) on all electrodes had a CNT coating applied to the electrodes on half of the array. This Pt/Pt-CNT MEA was implanted into feline motor cortex for >1 year. Recordings of action potentials and 1 kHz impedance measurements were made on all electrodes to evaluate device functionality. Additionally, electromyogram (EMG) responses were evoked using micro-stimulation via the MEA to measure device performance. These metrics were compared between Pt and Pt-CNT electrodes. There was no significant difference in the data acquisition or micro-stimulation performance of Pt and the Pt-CNT electrodes. However, impedances were lower on the Pt-CNT electrodes. These results demonstrate the functionality of CNT coatings during chronic in vivo implantation. The lower impedances suggest that for microstimulation applications CNT coatings may impart enhanced interface properties.

AB - Micro-electrode arrays (MEAs) have been used in a variety of intracortical neural prostheses. While intracortical MEAs have demonstrated their utility in neural prostheses, in many cases MEA performance declines after several months to years of in vivo implantation. The application of carbon nanotubes (CNTs) may increase the functional longevity of intracortical MEAs through enhanced biocompatibility and charge injection properties. An MEA metalized with platinum (Pt) on all electrodes had a CNT coating applied to the electrodes on half of the array. This Pt/Pt-CNT MEA was implanted into feline motor cortex for >1 year. Recordings of action potentials and 1 kHz impedance measurements were made on all electrodes to evaluate device functionality. Additionally, electromyogram (EMG) responses were evoked using micro-stimulation via the MEA to measure device performance. These metrics were compared between Pt and Pt-CNT electrodes. There was no significant difference in the data acquisition or micro-stimulation performance of Pt and the Pt-CNT electrodes. However, impedances were lower on the Pt-CNT electrodes. These results demonstrate the functionality of CNT coatings during chronic in vivo implantation. The lower impedances suggest that for microstimulation applications CNT coatings may impart enhanced interface properties.

UR - http://www.scopus.com/inward/record.url?scp=84883574778&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883574778&partnerID=8YFLogxK

M3 - Article

C2 - 23366011

AN - SCOPUS:84883574778

VL - 2012

SP - 791

EP - 794

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -