### Abstract

For a C*-algebra A, we give simple proofs of the following: C_{b} (Prim A) is isomorphic to the centre ZM(A) of the multiplier algebra, C_{b} (Prim A) is isomorphic to C (Prim M(A)) and Prim ZM(A) is the Stone-Čech compactification of Prim A.

Original language | English (US) |
---|---|

Pages (from-to) | 377-383 |

Number of pages | 7 |

Journal | Bulletin of the Australian Mathematical Society |

Volume | 52 |

Issue number | 3 |

DOIs | |

State | Published - Jan 1 1995 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

**The stone-Čech compactification of prim A.** / Boggess, May.

Research output: Contribution to journal › Article

*Bulletin of the Australian Mathematical Society*, vol. 52, no. 3, pp. 377-383. https://doi.org/10.1017/S0004972700014878

}

TY - JOUR

T1 - The stone-Čech compactification of prim A

AU - Boggess, May

PY - 1995/1/1

Y1 - 1995/1/1

N2 - For a C*-algebra A, we give simple proofs of the following: Cb (Prim A) is isomorphic to the centre ZM(A) of the multiplier algebra, Cb (Prim A) is isomorphic to C (Prim M(A)) and Prim ZM(A) is the Stone-Čech compactification of Prim A.

AB - For a C*-algebra A, we give simple proofs of the following: Cb (Prim A) is isomorphic to the centre ZM(A) of the multiplier algebra, Cb (Prim A) is isomorphic to C (Prim M(A)) and Prim ZM(A) is the Stone-Čech compactification of Prim A.

UR - http://www.scopus.com/inward/record.url?scp=84974325112&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84974325112&partnerID=8YFLogxK

U2 - 10.1017/S0004972700014878

DO - 10.1017/S0004972700014878

M3 - Article

VL - 52

SP - 377

EP - 383

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 3

ER -