The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon

Paul D. Spudis, Don E. Wilhelms, Mark Robinson

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

New images from the Lunar Reconnaissance Orbiter Camera show the distribution and geological relations of the Sculptured Hills, a geological unit widespread in the highlands between the Serenitatis and Crisium basins. The Sculptured Hills shows knobby, undulating, radially textured, and plains-like morphologies and in many places is indistinguishable from the similarly knobby Alpes Formation, a facies of ejecta from the Imbrium basin. The new LROC image data show that the Sculptured Hills in the Taurus highlands is Imbrium ejecta and not directly related to the formation of the Serenitatis basin. This occurrence and the geological relations of this unit suggests that the Apollo 17 impact melts may not be not samples of the Serenitatis basin-forming impact, leaving their provenance undetermined and origin unexplained. If the Apollo 17 melt rocks are Serenitatis impact melt, up to half of the basin and large crater population of the Moon was created within a 30 Ma interval around 3.8 Ga in a global impact "cataclysm." Either interpretation significantly changes our view of the impact process and history of the Earth-Moon system.

Original languageEnglish (US)
Article numberE00H03
JournalJournal of Geophysical Research E: Planets
Volume116
Issue number12
DOIs
StatePublished - Dec 1 2011

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon'. Together they form a unique fingerprint.

  • Cite this