The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California

Roman A. DiBiase, Kelin Whipple, Michael P. Lamb, Arjun Heimsath

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Bedrock rivers set the pace of landscape adjustment to tectonic and climatic forcing by transmitting signals of base-level change upstream through the channel network and ultimately to hillslopes. River incision is typically modeled as a monotonic function of bed shear stress or stream power, modulated by sediment tools and cover effects, but these models do not apply in channels with steep or vertical bedrock reaches due to changes in flow dynamics, hydraulic geometry, and bed cover. Here, we investigate how such knickzones (oversteepened channel reaches often containing waterfalls) influence the propagation of slope-break knickpoints that separate relict from adjusting topography, and thus the response times of landscapes to external forcing. We use a conceptual long-profile model to explore the consequences of waterfalls and knickzones on channel response and compare predictions to light detection and ranging (LiDAR) topography, field observations, and cosmogenic radionuclide data from Big Tujunga Creek, a 300 km2 watershed in the San Gabriel Mountains, California. Three prominent knickzones along Big Tujunga Creek, characterized by numerous waterfalls, show contrasting behavior. For the upper knickzone, waterfalls align with bands of harder rock exposed on adjacent hillslopes, and between waterfalls, the channel is mantled by large (>2 m) boulders, indicating knickzone retreat is slow compared to predictions of slope-break knickpoint retreat from stream-power models, enhancing the preservation of an upstream relict landscape. The middle knickzone shows evidence for both fast and slow knickzone retreat, as well as significant deviations from predictions of uniform tributary knickpoint elevations derived from stream-power models. The lower knickzone is characterized by a waterfall and knickzone within an incised inner gorge that provide evidence of rapid retreat relative to background channel incision. Overall, we find a pattern of decreasing knickzone and waterfall retreat rate with distance upstream of the range front, beyond decreases predicted by simple area-dependent celerity models. Our results highlight that waterfalls and knickzones can both enhance and inhibit landscape adjustment, leading to divergent controls on the pace of landscape evolution.

Original languageEnglish (US)
Pages (from-to)539-559
Number of pages21
JournalBulletin of the Geological Society of America
Volume127
Issue number3-4
DOIs
StatePublished - 2015

Fingerprint

waterfall
mountain
hillslope
bedrock
prediction
topography
cosmogenic radionuclide
landscape evolution
bottom stress
hard rock
gorge
river
shear stress
tributary
watershed
hydraulics
geometry
tectonics

ASJC Scopus subject areas

  • Geology

Cite this

@article{c3de98ed6d5b4280b8dd6612c2d94a92,
title = "The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California",
abstract = "Bedrock rivers set the pace of landscape adjustment to tectonic and climatic forcing by transmitting signals of base-level change upstream through the channel network and ultimately to hillslopes. River incision is typically modeled as a monotonic function of bed shear stress or stream power, modulated by sediment tools and cover effects, but these models do not apply in channels with steep or vertical bedrock reaches due to changes in flow dynamics, hydraulic geometry, and bed cover. Here, we investigate how such knickzones (oversteepened channel reaches often containing waterfalls) influence the propagation of slope-break knickpoints that separate relict from adjusting topography, and thus the response times of landscapes to external forcing. We use a conceptual long-profile model to explore the consequences of waterfalls and knickzones on channel response and compare predictions to light detection and ranging (LiDAR) topography, field observations, and cosmogenic radionuclide data from Big Tujunga Creek, a 300 km2 watershed in the San Gabriel Mountains, California. Three prominent knickzones along Big Tujunga Creek, characterized by numerous waterfalls, show contrasting behavior. For the upper knickzone, waterfalls align with bands of harder rock exposed on adjacent hillslopes, and between waterfalls, the channel is mantled by large (>2 m) boulders, indicating knickzone retreat is slow compared to predictions of slope-break knickpoint retreat from stream-power models, enhancing the preservation of an upstream relict landscape. The middle knickzone shows evidence for both fast and slow knickzone retreat, as well as significant deviations from predictions of uniform tributary knickpoint elevations derived from stream-power models. The lower knickzone is characterized by a waterfall and knickzone within an incised inner gorge that provide evidence of rapid retreat relative to background channel incision. Overall, we find a pattern of decreasing knickzone and waterfall retreat rate with distance upstream of the range front, beyond decreases predicted by simple area-dependent celerity models. Our results highlight that waterfalls and knickzones can both enhance and inhibit landscape adjustment, leading to divergent controls on the pace of landscape evolution.",
author = "DiBiase, {Roman A.} and Kelin Whipple and Lamb, {Michael P.} and Arjun Heimsath",
year = "2015",
doi = "10.1130/B31113.1",
language = "English (US)",
volume = "127",
pages = "539--559",
journal = "Bulletin of the Geological Society of America",
issn = "0016-7606",
publisher = "Geological Society of America",
number = "3-4",

}

TY - JOUR

T1 - The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California

AU - DiBiase, Roman A.

AU - Whipple, Kelin

AU - Lamb, Michael P.

AU - Heimsath, Arjun

PY - 2015

Y1 - 2015

N2 - Bedrock rivers set the pace of landscape adjustment to tectonic and climatic forcing by transmitting signals of base-level change upstream through the channel network and ultimately to hillslopes. River incision is typically modeled as a monotonic function of bed shear stress or stream power, modulated by sediment tools and cover effects, but these models do not apply in channels with steep or vertical bedrock reaches due to changes in flow dynamics, hydraulic geometry, and bed cover. Here, we investigate how such knickzones (oversteepened channel reaches often containing waterfalls) influence the propagation of slope-break knickpoints that separate relict from adjusting topography, and thus the response times of landscapes to external forcing. We use a conceptual long-profile model to explore the consequences of waterfalls and knickzones on channel response and compare predictions to light detection and ranging (LiDAR) topography, field observations, and cosmogenic radionuclide data from Big Tujunga Creek, a 300 km2 watershed in the San Gabriel Mountains, California. Three prominent knickzones along Big Tujunga Creek, characterized by numerous waterfalls, show contrasting behavior. For the upper knickzone, waterfalls align with bands of harder rock exposed on adjacent hillslopes, and between waterfalls, the channel is mantled by large (>2 m) boulders, indicating knickzone retreat is slow compared to predictions of slope-break knickpoint retreat from stream-power models, enhancing the preservation of an upstream relict landscape. The middle knickzone shows evidence for both fast and slow knickzone retreat, as well as significant deviations from predictions of uniform tributary knickpoint elevations derived from stream-power models. The lower knickzone is characterized by a waterfall and knickzone within an incised inner gorge that provide evidence of rapid retreat relative to background channel incision. Overall, we find a pattern of decreasing knickzone and waterfall retreat rate with distance upstream of the range front, beyond decreases predicted by simple area-dependent celerity models. Our results highlight that waterfalls and knickzones can both enhance and inhibit landscape adjustment, leading to divergent controls on the pace of landscape evolution.

AB - Bedrock rivers set the pace of landscape adjustment to tectonic and climatic forcing by transmitting signals of base-level change upstream through the channel network and ultimately to hillslopes. River incision is typically modeled as a monotonic function of bed shear stress or stream power, modulated by sediment tools and cover effects, but these models do not apply in channels with steep or vertical bedrock reaches due to changes in flow dynamics, hydraulic geometry, and bed cover. Here, we investigate how such knickzones (oversteepened channel reaches often containing waterfalls) influence the propagation of slope-break knickpoints that separate relict from adjusting topography, and thus the response times of landscapes to external forcing. We use a conceptual long-profile model to explore the consequences of waterfalls and knickzones on channel response and compare predictions to light detection and ranging (LiDAR) topography, field observations, and cosmogenic radionuclide data from Big Tujunga Creek, a 300 km2 watershed in the San Gabriel Mountains, California. Three prominent knickzones along Big Tujunga Creek, characterized by numerous waterfalls, show contrasting behavior. For the upper knickzone, waterfalls align with bands of harder rock exposed on adjacent hillslopes, and between waterfalls, the channel is mantled by large (>2 m) boulders, indicating knickzone retreat is slow compared to predictions of slope-break knickpoint retreat from stream-power models, enhancing the preservation of an upstream relict landscape. The middle knickzone shows evidence for both fast and slow knickzone retreat, as well as significant deviations from predictions of uniform tributary knickpoint elevations derived from stream-power models. The lower knickzone is characterized by a waterfall and knickzone within an incised inner gorge that provide evidence of rapid retreat relative to background channel incision. Overall, we find a pattern of decreasing knickzone and waterfall retreat rate with distance upstream of the range front, beyond decreases predicted by simple area-dependent celerity models. Our results highlight that waterfalls and knickzones can both enhance and inhibit landscape adjustment, leading to divergent controls on the pace of landscape evolution.

UR - http://www.scopus.com/inward/record.url?scp=84924943728&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84924943728&partnerID=8YFLogxK

U2 - 10.1130/B31113.1

DO - 10.1130/B31113.1

M3 - Article

AN - SCOPUS:84924943728

VL - 127

SP - 539

EP - 559

JO - Bulletin of the Geological Society of America

JF - Bulletin of the Geological Society of America

SN - 0016-7606

IS - 3-4

ER -