The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell

Yu Ye, Chen Gu, Sang-Heon Shim, Yue Meng, Vitali Prakapenka

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

In situ multianvil press (MAP) studies have reported that the depth and the Clapeyron slope of the postspinel boundary are significantly less than those of the 660 km discontinuity inferred from seismic studies. These results have raised questions about whether the postspinel transition is associated with the discontinuity. We determined the postspinel transition in pyrolitic compositions in the laser-heated diamond anvil cell (LHDAC) combined with in situ synchrotron X-ray diffraction. The Clapeyron slope was determined to be -2.5 ± 0.4MPa/K and did not vary significantly with compositions and used pressure scales. Using Pt scales, our data indicate that the postspinel transition occurs in pyrolitic compositions at 23.6-24.5GPa (1850K). The transition pressure and slope are consistent with the depth and topography of the 660 km discontinuity. Our data reveal that inaccuracy in pressure scales alone cannot explain the discrepancy and technical differences between MAP and LHDAC contribute significantly to the discrepancy.

Original languageEnglish (US)
Pages (from-to)3833-3841
Number of pages9
JournalGeophysical Research Letters
Volume41
Issue number11
DOIs
StatePublished - Jan 1 2014

Keywords

  • Clapeyron slope
  • the 660-km seismic discontinuity
  • the post-spinel boundary

ASJC Scopus subject areas

  • Geophysics
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell'. Together they form a unique fingerprint.

  • Cite this