The perceptual tone/noise ratio of merged iterated rippled noises

Roy D. Patterson, William Yost, Stephen Handel, A. Jaysurya Datta

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Iterated rippled noise (IRN) is constructed by delaying a random noise by d ms, adding it back to the same noise, and repeating the process iteratively. When two IRNs with the same power but slightly different delays are added together, the perceptual tone/noise ratio of the 'merged' IRN is markedly reduced with respect to that of either of the component IRNs. In this paper, the reduction in the perceptual tone/noise ratio is measured for IRNs in which one of the delays is always 16 ms and the other is either 16 ± 0.1 ms or 16 ± 1.1 ms. The component IRNs have the same number of iterations, and the number varies across conditions from 4 to 256. The perceptual tone/noise ratio is measured using a discrimination matching procedure developed for single IRNs; each merged IRN is compared with a range of 'standard' stimuli having varying proportions of a complex tone and a broadband noise [Patterson et al., J. Acoust. Soc. Am. 100, 3286-3294 (1996)]. For single IRNs, the function relating the signal-to-noise ratio of the matching standard to the number of iterations in the IRN was found to be essentially straight. This relationship was explained in terms of the height of the first peak in the autocorrelation of the stimulus wave, or by the first peak in the summary autocorrelogram produced by a time-domain auditory model. For the merged IRNs in the current experiment, the matching-point functions are found to have pronounced downward curvature, in addition to being well below the function for single IRNs. To account for the reduction in the perceptual tone/noise ratio of merged IRNs, the autocorrelation model was extended to include a simple rule for combining adjacent peaks in the autocorrelation function of the wave, and the autocorrelogram model was revised to improve the simulation of the 'loss of phase locking' at higher frequencies in the autocorrelogram. (C) 2000 Acoustical Society of America.

Original languageEnglish (US)
Pages (from-to)1578-1588
Number of pages11
JournalJournal of the Acoustical Society of America
Volume107
Issue number3
DOIs
StatePublished - Mar 1 2000
Externally publishedYes

Fingerprint

autocorrelation
stimuli
iteration
Autocorrelation
random noise
locking
discrimination
proportion
signal to noise ratios
curvature
Stimulus
Waves
Iteration
broadband
simulation
Simulation
Signal-to-noise Ratio
Summary
Experiment
Discrimination

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Cite this

The perceptual tone/noise ratio of merged iterated rippled noises. / Patterson, Roy D.; Yost, William; Handel, Stephen; Datta, A. Jaysurya.

In: Journal of the Acoustical Society of America, Vol. 107, No. 3, 01.03.2000, p. 1578-1588.

Research output: Contribution to journalArticle

Patterson, Roy D. ; Yost, William ; Handel, Stephen ; Datta, A. Jaysurya. / The perceptual tone/noise ratio of merged iterated rippled noises. In: Journal of the Acoustical Society of America. 2000 ; Vol. 107, No. 3. pp. 1578-1588.
@article{df275a2d7b3342f29bc6f9271d5b4e00,
title = "The perceptual tone/noise ratio of merged iterated rippled noises",
abstract = "Iterated rippled noise (IRN) is constructed by delaying a random noise by d ms, adding it back to the same noise, and repeating the process iteratively. When two IRNs with the same power but slightly different delays are added together, the perceptual tone/noise ratio of the 'merged' IRN is markedly reduced with respect to that of either of the component IRNs. In this paper, the reduction in the perceptual tone/noise ratio is measured for IRNs in which one of the delays is always 16 ms and the other is either 16 ± 0.1 ms or 16 ± 1.1 ms. The component IRNs have the same number of iterations, and the number varies across conditions from 4 to 256. The perceptual tone/noise ratio is measured using a discrimination matching procedure developed for single IRNs; each merged IRN is compared with a range of 'standard' stimuli having varying proportions of a complex tone and a broadband noise [Patterson et al., J. Acoust. Soc. Am. 100, 3286-3294 (1996)]. For single IRNs, the function relating the signal-to-noise ratio of the matching standard to the number of iterations in the IRN was found to be essentially straight. This relationship was explained in terms of the height of the first peak in the autocorrelation of the stimulus wave, or by the first peak in the summary autocorrelogram produced by a time-domain auditory model. For the merged IRNs in the current experiment, the matching-point functions are found to have pronounced downward curvature, in addition to being well below the function for single IRNs. To account for the reduction in the perceptual tone/noise ratio of merged IRNs, the autocorrelation model was extended to include a simple rule for combining adjacent peaks in the autocorrelation function of the wave, and the autocorrelogram model was revised to improve the simulation of the 'loss of phase locking' at higher frequencies in the autocorrelogram. (C) 2000 Acoustical Society of America.",
author = "Patterson, {Roy D.} and William Yost and Stephen Handel and Datta, {A. Jaysurya}",
year = "2000",
month = "3",
day = "1",
doi = "10.1121/1.428442",
language = "English (US)",
volume = "107",
pages = "1578--1588",
journal = "Journal of the Acoustical Society of America",
issn = "0001-4966",
publisher = "Acoustical Society of America",
number = "3",

}

TY - JOUR

T1 - The perceptual tone/noise ratio of merged iterated rippled noises

AU - Patterson, Roy D.

AU - Yost, William

AU - Handel, Stephen

AU - Datta, A. Jaysurya

PY - 2000/3/1

Y1 - 2000/3/1

N2 - Iterated rippled noise (IRN) is constructed by delaying a random noise by d ms, adding it back to the same noise, and repeating the process iteratively. When two IRNs with the same power but slightly different delays are added together, the perceptual tone/noise ratio of the 'merged' IRN is markedly reduced with respect to that of either of the component IRNs. In this paper, the reduction in the perceptual tone/noise ratio is measured for IRNs in which one of the delays is always 16 ms and the other is either 16 ± 0.1 ms or 16 ± 1.1 ms. The component IRNs have the same number of iterations, and the number varies across conditions from 4 to 256. The perceptual tone/noise ratio is measured using a discrimination matching procedure developed for single IRNs; each merged IRN is compared with a range of 'standard' stimuli having varying proportions of a complex tone and a broadband noise [Patterson et al., J. Acoust. Soc. Am. 100, 3286-3294 (1996)]. For single IRNs, the function relating the signal-to-noise ratio of the matching standard to the number of iterations in the IRN was found to be essentially straight. This relationship was explained in terms of the height of the first peak in the autocorrelation of the stimulus wave, or by the first peak in the summary autocorrelogram produced by a time-domain auditory model. For the merged IRNs in the current experiment, the matching-point functions are found to have pronounced downward curvature, in addition to being well below the function for single IRNs. To account for the reduction in the perceptual tone/noise ratio of merged IRNs, the autocorrelation model was extended to include a simple rule for combining adjacent peaks in the autocorrelation function of the wave, and the autocorrelogram model was revised to improve the simulation of the 'loss of phase locking' at higher frequencies in the autocorrelogram. (C) 2000 Acoustical Society of America.

AB - Iterated rippled noise (IRN) is constructed by delaying a random noise by d ms, adding it back to the same noise, and repeating the process iteratively. When two IRNs with the same power but slightly different delays are added together, the perceptual tone/noise ratio of the 'merged' IRN is markedly reduced with respect to that of either of the component IRNs. In this paper, the reduction in the perceptual tone/noise ratio is measured for IRNs in which one of the delays is always 16 ms and the other is either 16 ± 0.1 ms or 16 ± 1.1 ms. The component IRNs have the same number of iterations, and the number varies across conditions from 4 to 256. The perceptual tone/noise ratio is measured using a discrimination matching procedure developed for single IRNs; each merged IRN is compared with a range of 'standard' stimuli having varying proportions of a complex tone and a broadband noise [Patterson et al., J. Acoust. Soc. Am. 100, 3286-3294 (1996)]. For single IRNs, the function relating the signal-to-noise ratio of the matching standard to the number of iterations in the IRN was found to be essentially straight. This relationship was explained in terms of the height of the first peak in the autocorrelation of the stimulus wave, or by the first peak in the summary autocorrelogram produced by a time-domain auditory model. For the merged IRNs in the current experiment, the matching-point functions are found to have pronounced downward curvature, in addition to being well below the function for single IRNs. To account for the reduction in the perceptual tone/noise ratio of merged IRNs, the autocorrelation model was extended to include a simple rule for combining adjacent peaks in the autocorrelation function of the wave, and the autocorrelogram model was revised to improve the simulation of the 'loss of phase locking' at higher frequencies in the autocorrelogram. (C) 2000 Acoustical Society of America.

UR - http://www.scopus.com/inward/record.url?scp=0034050168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034050168&partnerID=8YFLogxK

U2 - 10.1121/1.428442

DO - 10.1121/1.428442

M3 - Article

VL - 107

SP - 1578

EP - 1588

JO - Journal of the Acoustical Society of America

JF - Journal of the Acoustical Society of America

SN - 0001-4966

IS - 3

ER -