The PEPSI Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy* * Based on data acquired with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) using the Large Binocular Telescope (LBT) in Arizona.

Marshall C. Johnson, Ji Wang, Anusha Pai Asnodkar, Aldo S. Bonomo, B. Scott Gaudi, Thomas Henning, Ilya Ilyin, Engin Keles, Luca Malavolta, Matthias Mallonn, Karan Molaverdikhani, Valerio Nascimbeni, Jennifer Patience, Katja Poppenhaeger, Gaetano Scandariato, Everett Schlawin, Evgenya Shkolnik, Daniela Sicilia, Alessandro Sozzetti, Klaus G. StrassmeierChristian Veillet, Fei Yan

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Recent observations have shown that the atmospheres of ultrahot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Fe i in emission at 16.9σ. Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set 4σ upper limits upon the volume mixing ratios for these constituents as low as ∼1 × 10−9 for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while we cannot set constraining limits on FeH with our data. We thus rule out TiO and CaH as the source of the temperature inversion in KELT-20 b, and VO only if the line lists are sufficiently accurate.

Original languageEnglish (US)
Article number157
JournalAstronomical Journal
Volume165
Issue number4
DOIs
StatePublished - Apr 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The PEPSI Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy* * Based on data acquired with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) using the Large Binocular Telescope (LBT) in Arizona.'. Together they form a unique fingerprint.

Cite this