The macroecology of sustainability

Joseph R. Burger, Craig D. Allen, James H. Brown, William R. Burnside, Ana D. Davidson, Trevor S. Fristoe, Marcus J. Hamilton, Norman Mercado-Silva, Jeffrey C. Nekola, Jordan Okie, Wenyun Zuo

Research output: Contribution to journalArticlepeer-review

101 Scopus citations

Abstract

The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.

Original languageEnglish (US)
Article numbere1001345
JournalPLoS biology
Volume10
Issue number6
DOIs
StatePublished - Jun 2012

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'The macroecology of sustainability'. Together they form a unique fingerprint.

Cite this