THE INFLUENCE of NONUNIFORM CLOUD COVER on TRANSIT TRANSMISSION SPECTRA

Michael Line, Vivien Parmentier

Research output: Contribution to journalArticlepeer-review

150 Scopus citations

Abstract

We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1-1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the "patchy cloud-high mean molecular weight" degeneracy exists. We also explore the degeneracy of nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.

Original languageEnglish (US)
Article number78
JournalAstrophysical Journal
Volume820
Issue number1
DOIs
StatePublished - Mar 20 2016

Keywords

  • methods: analytical
  • planets and satellites: atmospheres
  • planets and satellites: composition
  • planets and satellites: individual (HD 189733b, HAT-P-11b)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'THE INFLUENCE of NONUNIFORM CLOUD COVER on TRANSIT TRANSMISSION SPECTRA'. Together they form a unique fingerprint.

Cite this