The GJ 504 system revisited: Combining interferometric, radial velocity, and high contrast imaging data

M. Bonnefoy, K. Perraut, A. M. Lagrange, P. Delorme, A. Vigan, Michael Line, L. Rodet, C. Ginski, D. Mourard, G. D. Marleau, M. Samland, P. Tremblin, R. Ligi, F. Cantalloube, P. Mollière, B. Charnay, M. Kuzuhara, M. Janson, C. Morley, D. HomeierV. D'Orazi, H. Klahr, C. Mordasini, B. Lavie, J. L. Baudino, H. Beust, S. Peretti, A. Musso Bartucci, D. Mesa, B. Bézard, A. Boccaletti, R. Galicher, J. Hagelberg, S. Desidera, B. Biller, A. L. Maire, F. Allard, S. Borgniet, J. Lannier, N. Meunier, M. Desort, E. Alecian, G. Chauvin, M. Langlois, T. Henning, L. Mugnier, D. Mouillet, R. Gratton, T. Brandt, M. Mc Elwain, J. L. Beuzit, M. Tamura, Y. Hori, W. Brandner, E. Buenzli, A. Cheetham, M. Cudel, M. Feldt, M. Kasper, M. Keppler, T. Kopytova, M. Meyer, C. Perrot, D. Rouan, G. Salter, T. Schmidt, E. Sissa, A. Zurlo, F. Wildi, P. Blanchard, V. De Caprio, A. Delboulbé, D. Maurel, T. Moulin, A. Pavlov, P. Rabou, J. Ramos, R. Roelfsema, G. Rousset, E. Stadler, F. Rigal, L. Weber

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Context. The G-Type star GJ504A is known to host a 335 MJup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.022.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-To-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1:35 ± 0:04 R for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4:0 ± 1:8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162:4+3:8 -4:3 degrees or 18:6+4:3 -3:8 degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 14 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (μ1:5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.54.0 dex). The accuracy on the metallicity value is limited by model-To-model systematics; it is not degenerate with the C/O ratio. We derive log L=L = 6:15 ± 0:15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1:3+0:6 0:3 MJup and M = 23+10 -9 MJup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.0180 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-Accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.

Original languageEnglish (US)
Article numberA63
JournalAstronomy and Astrophysics
Volume618
DOIs
StatePublished - Oct 1 2018

Fingerprint

radial velocity
atmospheric models
spectral energy distribution
planet
planets
radii
misalignment
inclination
metallicity
energy
grids
luminosity
atmospheric composition
stellar rotation
stars
orbitals
James Webb Space Telescope
axes of rotation
empirical analysis
astrometry

Keywords

  • Planets and satellites: Atmospheres
  • Planets and satellites: formation
  • Stars: fundamental parameters
  • Techniques: high angular resolution
  • Techniques: interferometric
  • Techniques: radial velocities

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

The GJ 504 system revisited : Combining interferometric, radial velocity, and high contrast imaging data. / Bonnefoy, M.; Perraut, K.; Lagrange, A. M.; Delorme, P.; Vigan, A.; Line, Michael; Rodet, L.; Ginski, C.; Mourard, D.; Marleau, G. D.; Samland, M.; Tremblin, P.; Ligi, R.; Cantalloube, F.; Mollière, P.; Charnay, B.; Kuzuhara, M.; Janson, M.; Morley, C.; Homeier, D.; D'Orazi, V.; Klahr, H.; Mordasini, C.; Lavie, B.; Baudino, J. L.; Beust, H.; Peretti, S.; Musso Bartucci, A.; Mesa, D.; Bézard, B.; Boccaletti, A.; Galicher, R.; Hagelberg, J.; Desidera, S.; Biller, B.; Maire, A. L.; Allard, F.; Borgniet, S.; Lannier, J.; Meunier, N.; Desort, M.; Alecian, E.; Chauvin, G.; Langlois, M.; Henning, T.; Mugnier, L.; Mouillet, D.; Gratton, R.; Brandt, T.; Mc Elwain, M.; Beuzit, J. L.; Tamura, M.; Hori, Y.; Brandner, W.; Buenzli, E.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Keppler, M.; Kopytova, T.; Meyer, M.; Perrot, C.; Rouan, D.; Salter, G.; Schmidt, T.; Sissa, E.; Zurlo, A.; Wildi, F.; Blanchard, P.; De Caprio, V.; Delboulbé, A.; Maurel, D.; Moulin, T.; Pavlov, A.; Rabou, P.; Ramos, J.; Roelfsema, R.; Rousset, G.; Stadler, E.; Rigal, F.; Weber, L.

In: Astronomy and Astrophysics, Vol. 618, A63, 01.10.2018.

Research output: Contribution to journalArticle

Bonnefoy, M, Perraut, K, Lagrange, AM, Delorme, P, Vigan, A, Line, M, Rodet, L, Ginski, C, Mourard, D, Marleau, GD, Samland, M, Tremblin, P, Ligi, R, Cantalloube, F, Mollière, P, Charnay, B, Kuzuhara, M, Janson, M, Morley, C, Homeier, D, D'Orazi, V, Klahr, H, Mordasini, C, Lavie, B, Baudino, JL, Beust, H, Peretti, S, Musso Bartucci, A, Mesa, D, Bézard, B, Boccaletti, A, Galicher, R, Hagelberg, J, Desidera, S, Biller, B, Maire, AL, Allard, F, Borgniet, S, Lannier, J, Meunier, N, Desort, M, Alecian, E, Chauvin, G, Langlois, M, Henning, T, Mugnier, L, Mouillet, D, Gratton, R, Brandt, T, Mc Elwain, M, Beuzit, JL, Tamura, M, Hori, Y, Brandner, W, Buenzli, E, Cheetham, A, Cudel, M, Feldt, M, Kasper, M, Keppler, M, Kopytova, T, Meyer, M, Perrot, C, Rouan, D, Salter, G, Schmidt, T, Sissa, E, Zurlo, A, Wildi, F, Blanchard, P, De Caprio, V, Delboulbé, A, Maurel, D, Moulin, T, Pavlov, A, Rabou, P, Ramos, J, Roelfsema, R, Rousset, G, Stadler, E, Rigal, F & Weber, L 2018, 'The GJ 504 system revisited: Combining interferometric, radial velocity, and high contrast imaging data', Astronomy and Astrophysics, vol. 618, A63. https://doi.org/10.1051/0004-6361/201832942
Bonnefoy, M. ; Perraut, K. ; Lagrange, A. M. ; Delorme, P. ; Vigan, A. ; Line, Michael ; Rodet, L. ; Ginski, C. ; Mourard, D. ; Marleau, G. D. ; Samland, M. ; Tremblin, P. ; Ligi, R. ; Cantalloube, F. ; Mollière, P. ; Charnay, B. ; Kuzuhara, M. ; Janson, M. ; Morley, C. ; Homeier, D. ; D'Orazi, V. ; Klahr, H. ; Mordasini, C. ; Lavie, B. ; Baudino, J. L. ; Beust, H. ; Peretti, S. ; Musso Bartucci, A. ; Mesa, D. ; Bézard, B. ; Boccaletti, A. ; Galicher, R. ; Hagelberg, J. ; Desidera, S. ; Biller, B. ; Maire, A. L. ; Allard, F. ; Borgniet, S. ; Lannier, J. ; Meunier, N. ; Desort, M. ; Alecian, E. ; Chauvin, G. ; Langlois, M. ; Henning, T. ; Mugnier, L. ; Mouillet, D. ; Gratton, R. ; Brandt, T. ; Mc Elwain, M. ; Beuzit, J. L. ; Tamura, M. ; Hori, Y. ; Brandner, W. ; Buenzli, E. ; Cheetham, A. ; Cudel, M. ; Feldt, M. ; Kasper, M. ; Keppler, M. ; Kopytova, T. ; Meyer, M. ; Perrot, C. ; Rouan, D. ; Salter, G. ; Schmidt, T. ; Sissa, E. ; Zurlo, A. ; Wildi, F. ; Blanchard, P. ; De Caprio, V. ; Delboulbé, A. ; Maurel, D. ; Moulin, T. ; Pavlov, A. ; Rabou, P. ; Ramos, J. ; Roelfsema, R. ; Rousset, G. ; Stadler, E. ; Rigal, F. ; Weber, L. / The GJ 504 system revisited : Combining interferometric, radial velocity, and high contrast imaging data. In: Astronomy and Astrophysics. 2018 ; Vol. 618.
@article{242bc86f10434f26892ae253483d1e3a,
title = "The GJ 504 system revisited: Combining interferometric, radial velocity, and high contrast imaging data",
abstract = "Context. The G-Type star GJ504A is known to host a 335 MJup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.022.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-To-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1:35 ± 0:04 R for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4:0 ± 1:8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162:4+3:8 -4:3 degrees or 18:6+4:3 -3:8 degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 14 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (μ1:5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.54.0 dex). The accuracy on the metallicity value is limited by model-To-model systematics; it is not degenerate with the C/O ratio. We derive log L=L = 6:15 ± 0:15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1:3+0:6 0:3 MJup and M = 23+10 -9 MJup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90{\%} prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.0180 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-Accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.",
keywords = "Planets and satellites: Atmospheres, Planets and satellites: formation, Stars: fundamental parameters, Techniques: high angular resolution, Techniques: interferometric, Techniques: radial velocities",
author = "M. Bonnefoy and K. Perraut and Lagrange, {A. M.} and P. Delorme and A. Vigan and Michael Line and L. Rodet and C. Ginski and D. Mourard and Marleau, {G. D.} and M. Samland and P. Tremblin and R. Ligi and F. Cantalloube and P. Molli{\`e}re and B. Charnay and M. Kuzuhara and M. Janson and C. Morley and D. Homeier and V. D'Orazi and H. Klahr and C. Mordasini and B. Lavie and Baudino, {J. L.} and H. Beust and S. Peretti and {Musso Bartucci}, A. and D. Mesa and B. B{\'e}zard and A. Boccaletti and R. Galicher and J. Hagelberg and S. Desidera and B. Biller and Maire, {A. L.} and F. Allard and S. Borgniet and J. Lannier and N. Meunier and M. Desort and E. Alecian and G. Chauvin and M. Langlois and T. Henning and L. Mugnier and D. Mouillet and R. Gratton and T. Brandt and {Mc Elwain}, M. and Beuzit, {J. L.} and M. Tamura and Y. Hori and W. Brandner and E. Buenzli and A. Cheetham and M. Cudel and M. Feldt and M. Kasper and M. Keppler and T. Kopytova and M. Meyer and C. Perrot and D. Rouan and G. Salter and T. Schmidt and E. Sissa and A. Zurlo and F. Wildi and P. Blanchard and {De Caprio}, V. and A. Delboulb{\'e} and D. Maurel and T. Moulin and A. Pavlov and P. Rabou and J. Ramos and R. Roelfsema and G. Rousset and E. Stadler and F. Rigal and L. Weber",
year = "2018",
month = "10",
day = "1",
doi = "10.1051/0004-6361/201832942",
language = "English (US)",
volume = "618",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - The GJ 504 system revisited

T2 - Combining interferometric, radial velocity, and high contrast imaging data

AU - Bonnefoy, M.

AU - Perraut, K.

AU - Lagrange, A. M.

AU - Delorme, P.

AU - Vigan, A.

AU - Line, Michael

AU - Rodet, L.

AU - Ginski, C.

AU - Mourard, D.

AU - Marleau, G. D.

AU - Samland, M.

AU - Tremblin, P.

AU - Ligi, R.

AU - Cantalloube, F.

AU - Mollière, P.

AU - Charnay, B.

AU - Kuzuhara, M.

AU - Janson, M.

AU - Morley, C.

AU - Homeier, D.

AU - D'Orazi, V.

AU - Klahr, H.

AU - Mordasini, C.

AU - Lavie, B.

AU - Baudino, J. L.

AU - Beust, H.

AU - Peretti, S.

AU - Musso Bartucci, A.

AU - Mesa, D.

AU - Bézard, B.

AU - Boccaletti, A.

AU - Galicher, R.

AU - Hagelberg, J.

AU - Desidera, S.

AU - Biller, B.

AU - Maire, A. L.

AU - Allard, F.

AU - Borgniet, S.

AU - Lannier, J.

AU - Meunier, N.

AU - Desort, M.

AU - Alecian, E.

AU - Chauvin, G.

AU - Langlois, M.

AU - Henning, T.

AU - Mugnier, L.

AU - Mouillet, D.

AU - Gratton, R.

AU - Brandt, T.

AU - Mc Elwain, M.

AU - Beuzit, J. L.

AU - Tamura, M.

AU - Hori, Y.

AU - Brandner, W.

AU - Buenzli, E.

AU - Cheetham, A.

AU - Cudel, M.

AU - Feldt, M.

AU - Kasper, M.

AU - Keppler, M.

AU - Kopytova, T.

AU - Meyer, M.

AU - Perrot, C.

AU - Rouan, D.

AU - Salter, G.

AU - Schmidt, T.

AU - Sissa, E.

AU - Zurlo, A.

AU - Wildi, F.

AU - Blanchard, P.

AU - De Caprio, V.

AU - Delboulbé, A.

AU - Maurel, D.

AU - Moulin, T.

AU - Pavlov, A.

AU - Rabou, P.

AU - Ramos, J.

AU - Roelfsema, R.

AU - Rousset, G.

AU - Stadler, E.

AU - Rigal, F.

AU - Weber, L.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Context. The G-Type star GJ504A is known to host a 335 MJup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.022.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-To-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1:35 ± 0:04 R for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4:0 ± 1:8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162:4+3:8 -4:3 degrees or 18:6+4:3 -3:8 degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 14 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (μ1:5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.54.0 dex). The accuracy on the metallicity value is limited by model-To-model systematics; it is not degenerate with the C/O ratio. We derive log L=L = 6:15 ± 0:15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1:3+0:6 0:3 MJup and M = 23+10 -9 MJup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.0180 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-Accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.

AB - Context. The G-Type star GJ504A is known to host a 335 MJup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.022.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-To-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1:35 ± 0:04 R for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4:0 ± 1:8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162:4+3:8 -4:3 degrees or 18:6+4:3 -3:8 degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 14 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (μ1:5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.54.0 dex). The accuracy on the metallicity value is limited by model-To-model systematics; it is not degenerate with the C/O ratio. We derive log L=L = 6:15 ± 0:15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1:3+0:6 0:3 MJup and M = 23+10 -9 MJup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.0180 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-Accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.

KW - Planets and satellites: Atmospheres

KW - Planets and satellites: formation

KW - Stars: fundamental parameters

KW - Techniques: high angular resolution

KW - Techniques: interferometric

KW - Techniques: radial velocities

UR - http://www.scopus.com/inward/record.url?scp=85053508133&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053508133&partnerID=8YFLogxK

U2 - 10.1051/0004-6361/201832942

DO - 10.1051/0004-6361/201832942

M3 - Article

AN - SCOPUS:85053508133

VL - 618

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

M1 - A63

ER -