Abstract
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of 'genetic rescue' using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.
Original language | English (US) |
---|---|
Article number | 20123070 |
Journal | Proceedings of the Royal Society B: Biological Sciences |
Volume | 280 |
Issue number | 1752 |
DOIs | |
State | Published - 2013 |
Externally published | Yes |
Keywords
- Fitness
- Genetic diversity
- Genetic rescue
- Inbreeding
- Population bottlenecks
- Translocations
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Environmental Science(all)
- Agricultural and Biological Sciences(all)