10 Scopus citations

Abstract

The porous plasticity model (usually referred to as the Gurson-Tvergaard-Needleman model or modified Gurson model) has been widely used in the study of microvoid-induced ductile fracture. In this paper, we studied the effects of random voids on the porous plasticity model. Finite-element simulations were conducted to study a copper/tin/copper joint bar under uniaxial tension using the commercial finite-element package ABAQUS. A randomly distributed initial void volume fraction with different types of distribution was introduced, and the effects of this randomness on the crack path and macroscopic stress-strain behavior were studied. It was found that consideration of the random voids is able to capture more detailed and localized deformation features, such as different crack paths and different ultimate tensile strengths, and meanwhile does not change the macroscopic stress-strain behavior. It seems that the random voids are able to qualitatively explain the scattered observations in experiments while keeping the macroscopic measurements consistent.

Original languageEnglish (US)
Pages (from-to)177-183
Number of pages7
JournalJournal of Electronic Materials
Volume41
Issue number2
DOIs
StatePublished - Feb 2012

Keywords

  • Gurson model
  • finite-element analysis
  • porous plasticity
  • random voids

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The effect of random voids in the modified Gurson model'. Together they form a unique fingerprint.

Cite this