The effect of distractor frequency on judgments of target laterality based on interaural delays

Raymond H. Dye, Mark A. Stellmack, Anthony N. Grange, William Yost

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

A two-dimensional stimulus-classification paradigm was used to examine the ability of listeners to judge the laterality of an interaurally delayed low- frequency target component presented concurrently with a distractor component. Of primary interest was the effect on performance of the frequency difference (Δf) between the target and distractor. In one set of conditions, the target was fixed at 753 Hz and the distractor was 353, 553,653, 703, 803, 853, 953, or 1153 Hz (fixed within a block of trials). In a second set of conditions, the distractor was fixed at 753 Hz and the target frequency was 353, 553, 653, 703, 803, 853, 953, or 1153 Hz. The listeners were presented with a target component with an interaural delay that varied from trial to trial, taking on one of ten values, five leading to the left ear and five leading to the right. A distractor component was simultaneously presented with an interaural delay that also took on one of the same ten values. Delays ranged from -90 to +90 μs in 20-μs steps. During a block of 100 trials, each of the possible combinations of target and distractor delay was presented once and only once in a random order. Listeners were instructed to make left-right judgments based on the target delay. Each condition was repeated ten times, and the slopes of the best linear boundaries between left and right responses were used to derive the relative weights given to the target and distractor. The duration of the signals was 200 ms. Two of the eight listeners weighted the target heavily when the target and distractor were spectrally remote but gave the two components equal weight when the difference in frequency was small. These two listeners yielded similar target weights regardless of which component was designated as the target. One listener gave nearly equal weight to the target and the distractor regardless of Δf. Five of the listeners gave greater weight to the higher of the two frequencies regardless of which was assigned as the target. This high frequency dominance is explained in terms of cross-correlation functions based on the composite two-tone waveforms.

Original languageEnglish (US)
Pages (from-to)1096-1107
Number of pages12
JournalJournal of the Acoustical Society of America
Volume99
Issue number2
DOIs
StatePublished - Feb 1 1996
Externally publishedYes

Fingerprint

lateral stability
Laterality
Distractor
ear

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Cite this

The effect of distractor frequency on judgments of target laterality based on interaural delays. / Dye, Raymond H.; Stellmack, Mark A.; Grange, Anthony N.; Yost, William.

In: Journal of the Acoustical Society of America, Vol. 99, No. 2, 01.02.1996, p. 1096-1107.

Research output: Contribution to journalArticle

Dye, Raymond H. ; Stellmack, Mark A. ; Grange, Anthony N. ; Yost, William. / The effect of distractor frequency on judgments of target laterality based on interaural delays. In: Journal of the Acoustical Society of America. 1996 ; Vol. 99, No. 2. pp. 1096-1107.
@article{b3c465efc2e044689730b2ef7749b5c5,
title = "The effect of distractor frequency on judgments of target laterality based on interaural delays",
abstract = "A two-dimensional stimulus-classification paradigm was used to examine the ability of listeners to judge the laterality of an interaurally delayed low- frequency target component presented concurrently with a distractor component. Of primary interest was the effect on performance of the frequency difference (Δf) between the target and distractor. In one set of conditions, the target was fixed at 753 Hz and the distractor was 353, 553,653, 703, 803, 853, 953, or 1153 Hz (fixed within a block of trials). In a second set of conditions, the distractor was fixed at 753 Hz and the target frequency was 353, 553, 653, 703, 803, 853, 953, or 1153 Hz. The listeners were presented with a target component with an interaural delay that varied from trial to trial, taking on one of ten values, five leading to the left ear and five leading to the right. A distractor component was simultaneously presented with an interaural delay that also took on one of the same ten values. Delays ranged from -90 to +90 μs in 20-μs steps. During a block of 100 trials, each of the possible combinations of target and distractor delay was presented once and only once in a random order. Listeners were instructed to make left-right judgments based on the target delay. Each condition was repeated ten times, and the slopes of the best linear boundaries between left and right responses were used to derive the relative weights given to the target and distractor. The duration of the signals was 200 ms. Two of the eight listeners weighted the target heavily when the target and distractor were spectrally remote but gave the two components equal weight when the difference in frequency was small. These two listeners yielded similar target weights regardless of which component was designated as the target. One listener gave nearly equal weight to the target and the distractor regardless of Δf. Five of the listeners gave greater weight to the higher of the two frequencies regardless of which was assigned as the target. This high frequency dominance is explained in terms of cross-correlation functions based on the composite two-tone waveforms.",
author = "Dye, {Raymond H.} and Stellmack, {Mark A.} and Grange, {Anthony N.} and William Yost",
year = "1996",
month = "2",
day = "1",
doi = "10.1121/1.414670",
language = "English (US)",
volume = "99",
pages = "1096--1107",
journal = "Journal of the Acoustical Society of America",
issn = "0001-4966",
publisher = "Acoustical Society of America",
number = "2",

}

TY - JOUR

T1 - The effect of distractor frequency on judgments of target laterality based on interaural delays

AU - Dye, Raymond H.

AU - Stellmack, Mark A.

AU - Grange, Anthony N.

AU - Yost, William

PY - 1996/2/1

Y1 - 1996/2/1

N2 - A two-dimensional stimulus-classification paradigm was used to examine the ability of listeners to judge the laterality of an interaurally delayed low- frequency target component presented concurrently with a distractor component. Of primary interest was the effect on performance of the frequency difference (Δf) between the target and distractor. In one set of conditions, the target was fixed at 753 Hz and the distractor was 353, 553,653, 703, 803, 853, 953, or 1153 Hz (fixed within a block of trials). In a second set of conditions, the distractor was fixed at 753 Hz and the target frequency was 353, 553, 653, 703, 803, 853, 953, or 1153 Hz. The listeners were presented with a target component with an interaural delay that varied from trial to trial, taking on one of ten values, five leading to the left ear and five leading to the right. A distractor component was simultaneously presented with an interaural delay that also took on one of the same ten values. Delays ranged from -90 to +90 μs in 20-μs steps. During a block of 100 trials, each of the possible combinations of target and distractor delay was presented once and only once in a random order. Listeners were instructed to make left-right judgments based on the target delay. Each condition was repeated ten times, and the slopes of the best linear boundaries between left and right responses were used to derive the relative weights given to the target and distractor. The duration of the signals was 200 ms. Two of the eight listeners weighted the target heavily when the target and distractor were spectrally remote but gave the two components equal weight when the difference in frequency was small. These two listeners yielded similar target weights regardless of which component was designated as the target. One listener gave nearly equal weight to the target and the distractor regardless of Δf. Five of the listeners gave greater weight to the higher of the two frequencies regardless of which was assigned as the target. This high frequency dominance is explained in terms of cross-correlation functions based on the composite two-tone waveforms.

AB - A two-dimensional stimulus-classification paradigm was used to examine the ability of listeners to judge the laterality of an interaurally delayed low- frequency target component presented concurrently with a distractor component. Of primary interest was the effect on performance of the frequency difference (Δf) between the target and distractor. In one set of conditions, the target was fixed at 753 Hz and the distractor was 353, 553,653, 703, 803, 853, 953, or 1153 Hz (fixed within a block of trials). In a second set of conditions, the distractor was fixed at 753 Hz and the target frequency was 353, 553, 653, 703, 803, 853, 953, or 1153 Hz. The listeners were presented with a target component with an interaural delay that varied from trial to trial, taking on one of ten values, five leading to the left ear and five leading to the right. A distractor component was simultaneously presented with an interaural delay that also took on one of the same ten values. Delays ranged from -90 to +90 μs in 20-μs steps. During a block of 100 trials, each of the possible combinations of target and distractor delay was presented once and only once in a random order. Listeners were instructed to make left-right judgments based on the target delay. Each condition was repeated ten times, and the slopes of the best linear boundaries between left and right responses were used to derive the relative weights given to the target and distractor. The duration of the signals was 200 ms. Two of the eight listeners weighted the target heavily when the target and distractor were spectrally remote but gave the two components equal weight when the difference in frequency was small. These two listeners yielded similar target weights regardless of which component was designated as the target. One listener gave nearly equal weight to the target and the distractor regardless of Δf. Five of the listeners gave greater weight to the higher of the two frequencies regardless of which was assigned as the target. This high frequency dominance is explained in terms of cross-correlation functions based on the composite two-tone waveforms.

UR - http://www.scopus.com/inward/record.url?scp=0030042884&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030042884&partnerID=8YFLogxK

U2 - 10.1121/1.414670

DO - 10.1121/1.414670

M3 - Article

C2 - 8609293

AN - SCOPUS:0030042884

VL - 99

SP - 1096

EP - 1107

JO - Journal of the Acoustical Society of America

JF - Journal of the Acoustical Society of America

SN - 0001-4966

IS - 2

ER -