The control of timing and amplitude of EMG activity in landing movements in humans

Marco Santello, Martin J N Mcdonagh

Research output: Contribution to journalArticle

131 Citations (Scopus)

Abstract

The control of self-initiated falls from different heights was studied. The objective of the study was to investigate in a quantitative manner the modulation of EMG timing (i.e. onset from take-off and duration from onset to touch-down) and amplitude (before and after foot contact) as a function of fall height. The muscles studied were m. soleus and m. tibialis anterior. Kinematic (ankle joint angle) and kinetic (ground reaction force) variables were also measured. Six subjects took part in the experiments that consisted of ten landings from each of five heights (0.2, 0.4, 0.6, 0.8 and 1 m) onto a force platform. We found a consistent pattern of co-contraction before and after touchdown across the fall heights studied. In both muscles, the onset of pre-landing EMG activity occurred at a longer latency following take-off when landing from greater heights. The absolute EMG duration was affected to a lesser extent by increasing fall height. These findings suggest that the onset of muscle activity of the muscles studied prior to foot contact is timed relative to the expected time of foot contact, pre- and post-landing EMG amplitude tended to increase with height. Despite a doubling in the magnitude of ground reaction force, the amplitude of ankle joint rotation caused by the impact remained constant across heights. These findings suggest that the observed pattern of co-contraction is responsible for increasing ankle joint stiffness as fall height is increased. The attainment of an appropriate level of EMG amplitude seems to be controlled by (a) timing muscle activation at a latency timed from the expected instant of foot contact and (b) varying the rate at which EMG builds up.

Original languageEnglish (US)
Pages (from-to)857-874
Number of pages18
JournalExperimental Physiology
Volume83
Issue number6
StatePublished - Nov 1998
Externally publishedYes

Fingerprint

Ankle Joint
Foot
Muscles
Touch
Biomechanical Phenomena

ASJC Scopus subject areas

  • Physiology

Cite this

The control of timing and amplitude of EMG activity in landing movements in humans. / Santello, Marco; Mcdonagh, Martin J N.

In: Experimental Physiology, Vol. 83, No. 6, 11.1998, p. 857-874.

Research output: Contribution to journalArticle

@article{c91beb445d3b415daac991fe0c7ad197,
title = "The control of timing and amplitude of EMG activity in landing movements in humans",
abstract = "The control of self-initiated falls from different heights was studied. The objective of the study was to investigate in a quantitative manner the modulation of EMG timing (i.e. onset from take-off and duration from onset to touch-down) and amplitude (before and after foot contact) as a function of fall height. The muscles studied were m. soleus and m. tibialis anterior. Kinematic (ankle joint angle) and kinetic (ground reaction force) variables were also measured. Six subjects took part in the experiments that consisted of ten landings from each of five heights (0.2, 0.4, 0.6, 0.8 and 1 m) onto a force platform. We found a consistent pattern of co-contraction before and after touchdown across the fall heights studied. In both muscles, the onset of pre-landing EMG activity occurred at a longer latency following take-off when landing from greater heights. The absolute EMG duration was affected to a lesser extent by increasing fall height. These findings suggest that the onset of muscle activity of the muscles studied prior to foot contact is timed relative to the expected time of foot contact, pre- and post-landing EMG amplitude tended to increase with height. Despite a doubling in the magnitude of ground reaction force, the amplitude of ankle joint rotation caused by the impact remained constant across heights. These findings suggest that the observed pattern of co-contraction is responsible for increasing ankle joint stiffness as fall height is increased. The attainment of an appropriate level of EMG amplitude seems to be controlled by (a) timing muscle activation at a latency timed from the expected instant of foot contact and (b) varying the rate at which EMG builds up.",
author = "Marco Santello and Mcdonagh, {Martin J N}",
year = "1998",
month = "11",
language = "English (US)",
volume = "83",
pages = "857--874",
journal = "Experimental Physiology",
issn = "0958-0670",
publisher = "Wiley-Blackwell",
number = "6",

}

TY - JOUR

T1 - The control of timing and amplitude of EMG activity in landing movements in humans

AU - Santello, Marco

AU - Mcdonagh, Martin J N

PY - 1998/11

Y1 - 1998/11

N2 - The control of self-initiated falls from different heights was studied. The objective of the study was to investigate in a quantitative manner the modulation of EMG timing (i.e. onset from take-off and duration from onset to touch-down) and amplitude (before and after foot contact) as a function of fall height. The muscles studied were m. soleus and m. tibialis anterior. Kinematic (ankle joint angle) and kinetic (ground reaction force) variables were also measured. Six subjects took part in the experiments that consisted of ten landings from each of five heights (0.2, 0.4, 0.6, 0.8 and 1 m) onto a force platform. We found a consistent pattern of co-contraction before and after touchdown across the fall heights studied. In both muscles, the onset of pre-landing EMG activity occurred at a longer latency following take-off when landing from greater heights. The absolute EMG duration was affected to a lesser extent by increasing fall height. These findings suggest that the onset of muscle activity of the muscles studied prior to foot contact is timed relative to the expected time of foot contact, pre- and post-landing EMG amplitude tended to increase with height. Despite a doubling in the magnitude of ground reaction force, the amplitude of ankle joint rotation caused by the impact remained constant across heights. These findings suggest that the observed pattern of co-contraction is responsible for increasing ankle joint stiffness as fall height is increased. The attainment of an appropriate level of EMG amplitude seems to be controlled by (a) timing muscle activation at a latency timed from the expected instant of foot contact and (b) varying the rate at which EMG builds up.

AB - The control of self-initiated falls from different heights was studied. The objective of the study was to investigate in a quantitative manner the modulation of EMG timing (i.e. onset from take-off and duration from onset to touch-down) and amplitude (before and after foot contact) as a function of fall height. The muscles studied were m. soleus and m. tibialis anterior. Kinematic (ankle joint angle) and kinetic (ground reaction force) variables were also measured. Six subjects took part in the experiments that consisted of ten landings from each of five heights (0.2, 0.4, 0.6, 0.8 and 1 m) onto a force platform. We found a consistent pattern of co-contraction before and after touchdown across the fall heights studied. In both muscles, the onset of pre-landing EMG activity occurred at a longer latency following take-off when landing from greater heights. The absolute EMG duration was affected to a lesser extent by increasing fall height. These findings suggest that the onset of muscle activity of the muscles studied prior to foot contact is timed relative to the expected time of foot contact, pre- and post-landing EMG amplitude tended to increase with height. Despite a doubling in the magnitude of ground reaction force, the amplitude of ankle joint rotation caused by the impact remained constant across heights. These findings suggest that the observed pattern of co-contraction is responsible for increasing ankle joint stiffness as fall height is increased. The attainment of an appropriate level of EMG amplitude seems to be controlled by (a) timing muscle activation at a latency timed from the expected instant of foot contact and (b) varying the rate at which EMG builds up.

UR - http://www.scopus.com/inward/record.url?scp=0031794672&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031794672&partnerID=8YFLogxK

M3 - Article

C2 - 9782194

AN - SCOPUS:0031794672

VL - 83

SP - 857

EP - 874

JO - Experimental Physiology

JF - Experimental Physiology

SN - 0958-0670

IS - 6

ER -