The contribution of late-type/irregulars to the faint galaxy counts from Hubble Space Telescope medium deep survey images

Simon P. Driver, Rogier Windhorst, Richard E. Griffiths

Research output: Contribution to journalArticle

139 Citations (Scopus)

Abstract

We present a complete morphologically classified sample of 144 faint field galaxies from the HST Medium Deep Survey with 20.0 ≤ mI < 22.0 mag. We compare the global properties of the ellipticals and early- and late-type spirals and find a nonnegligible fraction (13/144) of compact blue [(V-I) ≤ 1.0 mag] systems with r1/4 profiles. We give the differential galaxy number counts for ellipticals and early-type spirals independently and find that the data are consistent with no-evolution predictions based on conventional flat Schechter luminosity functions (LFs) and a standard cosmology. Conversely, late-type/irregulars show a steeply rising differential number count with slope (δ log N/δm) = 0.64 ± 0.1. No-evolution models based on the Loveday et al. and Marzke et al. local luminosity functions underpredict the late-type/irregular counts by 1.0 and 0.5 dex, respectively, at mI = 21.75 mag. Examination of the irregulars alone shows that ∼ 50% appear inert and the remainder have multiple cores. If the inert galaxies represent a nonevolving late-type population, then a Loveday-like LF (α ≃ -1.0) is ruled out for these types, and an LF with a steep faint end (α ≃ -1.5) is suggested. If multiple core structure indicates recent star formation, then the observed excess of faint blue field galaxies is likely a result of evolutionary processes acting on a steep field LF for late-type/irregulars. The evolutionary mechanism is unclear, but 60% of the multiple-core irregulars show close companions. To reconcile a Marzke-like LF with the faint redshift surveys, this evolution must be preferentially occurring in the brightest late-type galaxies with z ≳ 0.5 at mI = 21.75 mag.

Original languageEnglish (US)
Pages (from-to)48-64
Number of pages17
JournalAstrophysical Journal
Volume453
Issue number1
StatePublished - Nov 1 1995

Fingerprint

Hubble Space Telescope
luminosity
galaxies
population type
cosmology
star formation
examination
slopes
profiles
prediction
predictions

Keywords

  • Galaxies: evolution
  • Galaxies: fundamental parameters
  • Galaxies: irregular
  • Galaxies: luminosity function, mass function
  • Galaxies: statistics
  • Surveys

ASJC Scopus subject areas

  • Space and Planetary Science

Cite this

The contribution of late-type/irregulars to the faint galaxy counts from Hubble Space Telescope medium deep survey images. / Driver, Simon P.; Windhorst, Rogier; Griffiths, Richard E.

In: Astrophysical Journal, Vol. 453, No. 1, 01.11.1995, p. 48-64.

Research output: Contribution to journalArticle

@article{1b8dec4015734c139ddf232cae52938d,
title = "The contribution of late-type/irregulars to the faint galaxy counts from Hubble Space Telescope medium deep survey images",
abstract = "We present a complete morphologically classified sample of 144 faint field galaxies from the HST Medium Deep Survey with 20.0 ≤ mI < 22.0 mag. We compare the global properties of the ellipticals and early- and late-type spirals and find a nonnegligible fraction (13/144) of compact blue [(V-I) ≤ 1.0 mag] systems with r1/4 profiles. We give the differential galaxy number counts for ellipticals and early-type spirals independently and find that the data are consistent with no-evolution predictions based on conventional flat Schechter luminosity functions (LFs) and a standard cosmology. Conversely, late-type/irregulars show a steeply rising differential number count with slope (δ log N/δm) = 0.64 ± 0.1. No-evolution models based on the Loveday et al. and Marzke et al. local luminosity functions underpredict the late-type/irregular counts by 1.0 and 0.5 dex, respectively, at mI = 21.75 mag. Examination of the irregulars alone shows that ∼ 50{\%} appear inert and the remainder have multiple cores. If the inert galaxies represent a nonevolving late-type population, then a Loveday-like LF (α ≃ -1.0) is ruled out for these types, and an LF with a steep faint end (α ≃ -1.5) is suggested. If multiple core structure indicates recent star formation, then the observed excess of faint blue field galaxies is likely a result of evolutionary processes acting on a steep field LF for late-type/irregulars. The evolutionary mechanism is unclear, but 60{\%} of the multiple-core irregulars show close companions. To reconcile a Marzke-like LF with the faint redshift surveys, this evolution must be preferentially occurring in the brightest late-type galaxies with z ≳ 0.5 at mI = 21.75 mag.",
keywords = "Galaxies: evolution, Galaxies: fundamental parameters, Galaxies: irregular, Galaxies: luminosity function, mass function, Galaxies: statistics, Surveys",
author = "Driver, {Simon P.} and Rogier Windhorst and Griffiths, {Richard E.}",
year = "1995",
month = "11",
day = "1",
language = "English (US)",
volume = "453",
pages = "48--64",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - The contribution of late-type/irregulars to the faint galaxy counts from Hubble Space Telescope medium deep survey images

AU - Driver, Simon P.

AU - Windhorst, Rogier

AU - Griffiths, Richard E.

PY - 1995/11/1

Y1 - 1995/11/1

N2 - We present a complete morphologically classified sample of 144 faint field galaxies from the HST Medium Deep Survey with 20.0 ≤ mI < 22.0 mag. We compare the global properties of the ellipticals and early- and late-type spirals and find a nonnegligible fraction (13/144) of compact blue [(V-I) ≤ 1.0 mag] systems with r1/4 profiles. We give the differential galaxy number counts for ellipticals and early-type spirals independently and find that the data are consistent with no-evolution predictions based on conventional flat Schechter luminosity functions (LFs) and a standard cosmology. Conversely, late-type/irregulars show a steeply rising differential number count with slope (δ log N/δm) = 0.64 ± 0.1. No-evolution models based on the Loveday et al. and Marzke et al. local luminosity functions underpredict the late-type/irregular counts by 1.0 and 0.5 dex, respectively, at mI = 21.75 mag. Examination of the irregulars alone shows that ∼ 50% appear inert and the remainder have multiple cores. If the inert galaxies represent a nonevolving late-type population, then a Loveday-like LF (α ≃ -1.0) is ruled out for these types, and an LF with a steep faint end (α ≃ -1.5) is suggested. If multiple core structure indicates recent star formation, then the observed excess of faint blue field galaxies is likely a result of evolutionary processes acting on a steep field LF for late-type/irregulars. The evolutionary mechanism is unclear, but 60% of the multiple-core irregulars show close companions. To reconcile a Marzke-like LF with the faint redshift surveys, this evolution must be preferentially occurring in the brightest late-type galaxies with z ≳ 0.5 at mI = 21.75 mag.

AB - We present a complete morphologically classified sample of 144 faint field galaxies from the HST Medium Deep Survey with 20.0 ≤ mI < 22.0 mag. We compare the global properties of the ellipticals and early- and late-type spirals and find a nonnegligible fraction (13/144) of compact blue [(V-I) ≤ 1.0 mag] systems with r1/4 profiles. We give the differential galaxy number counts for ellipticals and early-type spirals independently and find that the data are consistent with no-evolution predictions based on conventional flat Schechter luminosity functions (LFs) and a standard cosmology. Conversely, late-type/irregulars show a steeply rising differential number count with slope (δ log N/δm) = 0.64 ± 0.1. No-evolution models based on the Loveday et al. and Marzke et al. local luminosity functions underpredict the late-type/irregular counts by 1.0 and 0.5 dex, respectively, at mI = 21.75 mag. Examination of the irregulars alone shows that ∼ 50% appear inert and the remainder have multiple cores. If the inert galaxies represent a nonevolving late-type population, then a Loveday-like LF (α ≃ -1.0) is ruled out for these types, and an LF with a steep faint end (α ≃ -1.5) is suggested. If multiple core structure indicates recent star formation, then the observed excess of faint blue field galaxies is likely a result of evolutionary processes acting on a steep field LF for late-type/irregulars. The evolutionary mechanism is unclear, but 60% of the multiple-core irregulars show close companions. To reconcile a Marzke-like LF with the faint redshift surveys, this evolution must be preferentially occurring in the brightest late-type galaxies with z ≳ 0.5 at mI = 21.75 mag.

KW - Galaxies: evolution

KW - Galaxies: fundamental parameters

KW - Galaxies: irregular

KW - Galaxies: luminosity function, mass function

KW - Galaxies: statistics

KW - Surveys

UR - http://www.scopus.com/inward/record.url?scp=11944274887&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=11944274887&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:11944274887

VL - 453

SP - 48

EP - 64

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1

ER -