### Abstract

If G is a graph which induces neither K_{1,3} nor K_{5}-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K_{1,3} nor K_{5}-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

Original language | English (US) |
---|---|

Pages (from-to) | 253-262 |

Number of pages | 10 |

Journal | Discrete Mathematics |

Volume | 58 |

Issue number | 3 |

DOIs | |

State | Published - 1986 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

_{1,3}nor K

_{5}-e.

*Discrete Mathematics*,

*58*(3), 253-262. https://doi.org/10.1016/0012-365X(86)90142-1

**The chromatic number of graphs which induce neither K _{1,3} nor K_{5}-e.** / Kierstead, Henry; Schmerl, James H.

Research output: Contribution to journal › Article

_{1,3}nor K

_{5}-e',

*Discrete Mathematics*, vol. 58, no. 3, pp. 253-262. https://doi.org/10.1016/0012-365X(86)90142-1

_{1,3}nor K

_{5}-e. Discrete Mathematics. 1986;58(3):253-262. https://doi.org/10.1016/0012-365X(86)90142-1

}

TY - JOUR

T1 - The chromatic number of graphs which induce neither K1,3 nor K5-e

AU - Kierstead, Henry

AU - Schmerl, James H.

PY - 1986

Y1 - 1986

N2 - If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

AB - If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

UR - http://www.scopus.com/inward/record.url?scp=38249043609&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249043609&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(86)90142-1

DO - 10.1016/0012-365X(86)90142-1

M3 - Article

AN - SCOPUS:38249043609

VL - 58

SP - 253

EP - 262

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -