The chromatic number of graphs which induce neither K1,3 nor K5-e

Henry Kierstead, James H. Schmerl

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

Original languageEnglish (US)
Pages (from-to)253-262
Number of pages10
JournalDiscrete Mathematics
Volume58
Issue number3
DOIs
StatePublished - 1986
Externally publishedYes

Fingerprint

Chromatic number
Graph in graph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

The chromatic number of graphs which induce neither K1,3 nor K5-e. / Kierstead, Henry; Schmerl, James H.

In: Discrete Mathematics, Vol. 58, No. 3, 1986, p. 253-262.

Research output: Contribution to journalArticle

@article{7c5810f36b9041fab5ea65fe03491644,
title = "The chromatic number of graphs which induce neither K1,3 nor K5-e",
abstract = "If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.",
author = "Henry Kierstead and Schmerl, {James H.}",
year = "1986",
doi = "10.1016/0012-365X(86)90142-1",
language = "English (US)",
volume = "58",
pages = "253--262",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - The chromatic number of graphs which induce neither K1,3 nor K5-e

AU - Kierstead, Henry

AU - Schmerl, James H.

PY - 1986

Y1 - 1986

N2 - If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

AB - If G is a graph which induces neither K1,3 nor K5-e and if Δ(G)≤2ω(G)-5, then χ(G) = ω(G). Conversely, for each k ≥ 4 there is a graph G which induces neither K1,3 nor K5-e such that ω(G) = k, Δ(G) = 2k - 3 and χ(G) = k + 1.

UR - http://www.scopus.com/inward/record.url?scp=38249043609&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249043609&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(86)90142-1

DO - 10.1016/0012-365X(86)90142-1

M3 - Article

AN - SCOPUS:38249043609

VL - 58

SP - 253

EP - 262

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -