The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae

Y. Sakai, Pamela Marshall, A. Saiganji, K. Takabe, H. Saiki, N. Kato, J. M. Goodman

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

The mechanism of peroxisome proliferation is poorly understood. Candida boidinii is a methylotrophic yeast that undergoes rapid and massive peroxisome proliferation and serves as a good model system for this process. Pmp30A and Pmp30B (formerly designated Pmp31 and Pmp32, respectively) are two closely related proteins in a polyploid strain of this yeast that are strongly induced by diverse peroxisome proliferators such as methanol, oleate, and D-alanine. The function of these proteins is not understood. To study this issue, we used a recently described haploid strain (S2) of C. boidinii that can he manipulated genetically. We now report that strain S2 contains a single PMP30 gene very similar in sequence (greater than 93% identity at the DNA level) to PMP30A and PMP30B. When PMP30 was disrupted, cell growth on methanol was greatly inhibited, and cells grown in both methanol and oleate had fewer, larger, and more spherical peroxisomes than wild-type cells. A similar phenotype was recently described for Saccharomyces cerevisiae cultured on oleate in which PMP27, which encodes a protein of related sequence that is important for peroxisome proliferation, was disrupted. To determine whether Pmp27 is a functional homolog of Pmp30, genetic complementation was performed. PMP30A was expressed in the PMP27 disruptant of S. cerevisiae, and PMP27 was expressed in the PMP30 disruptant of C. boidinii S2. Complementation, in terms of both cell growth and organelle size, shape, and number, was successful in both directions, although reversion to a wild-type phenotype was only partial for the PMP30 disruptant. We conclude that these proteins are functional homologs and that both Pmp30 and Pmp27 have a direct role in proliferation and organelle size rather than a role in a specific peroxisomal metabolic pathway of substrate utilization.

Original languageEnglish (US)
Pages (from-to)6773-6781
Number of pages9
JournalJournal of Bacteriology
Volume177
Issue number23
StatePublished - 1995
Externally publishedYes

Fingerprint

Peroxisomes
Candida
Saccharomyces cerevisiae
Organelle Size
Membrane Proteins
Oleic Acid
Methanol
Organelle Shape
Proteins
Yeasts
Peroxisome Proliferators
Phenotype
Polyploidy
Haploidy
Growth
Metabolic Networks and Pathways
Cell Size
Alanine
DNA
Genes

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Immunology

Cite this

The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae. / Sakai, Y.; Marshall, Pamela; Saiganji, A.; Takabe, K.; Saiki, H.; Kato, N.; Goodman, J. M.

In: Journal of Bacteriology, Vol. 177, No. 23, 1995, p. 6773-6781.

Research output: Contribution to journalArticle

@article{23c9bae44e5b47adb29ed5117b423b39,
title = "The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae",
abstract = "The mechanism of peroxisome proliferation is poorly understood. Candida boidinii is a methylotrophic yeast that undergoes rapid and massive peroxisome proliferation and serves as a good model system for this process. Pmp30A and Pmp30B (formerly designated Pmp31 and Pmp32, respectively) are two closely related proteins in a polyploid strain of this yeast that are strongly induced by diverse peroxisome proliferators such as methanol, oleate, and D-alanine. The function of these proteins is not understood. To study this issue, we used a recently described haploid strain (S2) of C. boidinii that can he manipulated genetically. We now report that strain S2 contains a single PMP30 gene very similar in sequence (greater than 93{\%} identity at the DNA level) to PMP30A and PMP30B. When PMP30 was disrupted, cell growth on methanol was greatly inhibited, and cells grown in both methanol and oleate had fewer, larger, and more spherical peroxisomes than wild-type cells. A similar phenotype was recently described for Saccharomyces cerevisiae cultured on oleate in which PMP27, which encodes a protein of related sequence that is important for peroxisome proliferation, was disrupted. To determine whether Pmp27 is a functional homolog of Pmp30, genetic complementation was performed. PMP30A was expressed in the PMP27 disruptant of S. cerevisiae, and PMP27 was expressed in the PMP30 disruptant of C. boidinii S2. Complementation, in terms of both cell growth and organelle size, shape, and number, was successful in both directions, although reversion to a wild-type phenotype was only partial for the PMP30 disruptant. We conclude that these proteins are functional homologs and that both Pmp30 and Pmp27 have a direct role in proliferation and organelle size rather than a role in a specific peroxisomal metabolic pathway of substrate utilization.",
author = "Y. Sakai and Pamela Marshall and A. Saiganji and K. Takabe and H. Saiki and N. Kato and Goodman, {J. M.}",
year = "1995",
language = "English (US)",
volume = "177",
pages = "6773--6781",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "23",

}

TY - JOUR

T1 - The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae

AU - Sakai, Y.

AU - Marshall, Pamela

AU - Saiganji, A.

AU - Takabe, K.

AU - Saiki, H.

AU - Kato, N.

AU - Goodman, J. M.

PY - 1995

Y1 - 1995

N2 - The mechanism of peroxisome proliferation is poorly understood. Candida boidinii is a methylotrophic yeast that undergoes rapid and massive peroxisome proliferation and serves as a good model system for this process. Pmp30A and Pmp30B (formerly designated Pmp31 and Pmp32, respectively) are two closely related proteins in a polyploid strain of this yeast that are strongly induced by diverse peroxisome proliferators such as methanol, oleate, and D-alanine. The function of these proteins is not understood. To study this issue, we used a recently described haploid strain (S2) of C. boidinii that can he manipulated genetically. We now report that strain S2 contains a single PMP30 gene very similar in sequence (greater than 93% identity at the DNA level) to PMP30A and PMP30B. When PMP30 was disrupted, cell growth on methanol was greatly inhibited, and cells grown in both methanol and oleate had fewer, larger, and more spherical peroxisomes than wild-type cells. A similar phenotype was recently described for Saccharomyces cerevisiae cultured on oleate in which PMP27, which encodes a protein of related sequence that is important for peroxisome proliferation, was disrupted. To determine whether Pmp27 is a functional homolog of Pmp30, genetic complementation was performed. PMP30A was expressed in the PMP27 disruptant of S. cerevisiae, and PMP27 was expressed in the PMP30 disruptant of C. boidinii S2. Complementation, in terms of both cell growth and organelle size, shape, and number, was successful in both directions, although reversion to a wild-type phenotype was only partial for the PMP30 disruptant. We conclude that these proteins are functional homologs and that both Pmp30 and Pmp27 have a direct role in proliferation and organelle size rather than a role in a specific peroxisomal metabolic pathway of substrate utilization.

AB - The mechanism of peroxisome proliferation is poorly understood. Candida boidinii is a methylotrophic yeast that undergoes rapid and massive peroxisome proliferation and serves as a good model system for this process. Pmp30A and Pmp30B (formerly designated Pmp31 and Pmp32, respectively) are two closely related proteins in a polyploid strain of this yeast that are strongly induced by diverse peroxisome proliferators such as methanol, oleate, and D-alanine. The function of these proteins is not understood. To study this issue, we used a recently described haploid strain (S2) of C. boidinii that can he manipulated genetically. We now report that strain S2 contains a single PMP30 gene very similar in sequence (greater than 93% identity at the DNA level) to PMP30A and PMP30B. When PMP30 was disrupted, cell growth on methanol was greatly inhibited, and cells grown in both methanol and oleate had fewer, larger, and more spherical peroxisomes than wild-type cells. A similar phenotype was recently described for Saccharomyces cerevisiae cultured on oleate in which PMP27, which encodes a protein of related sequence that is important for peroxisome proliferation, was disrupted. To determine whether Pmp27 is a functional homolog of Pmp30, genetic complementation was performed. PMP30A was expressed in the PMP27 disruptant of S. cerevisiae, and PMP27 was expressed in the PMP30 disruptant of C. boidinii S2. Complementation, in terms of both cell growth and organelle size, shape, and number, was successful in both directions, although reversion to a wild-type phenotype was only partial for the PMP30 disruptant. We conclude that these proteins are functional homologs and that both Pmp30 and Pmp27 have a direct role in proliferation and organelle size rather than a role in a specific peroxisomal metabolic pathway of substrate utilization.

UR - http://www.scopus.com/inward/record.url?scp=0028783419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028783419&partnerID=8YFLogxK

M3 - Article

C2 - 7592467

AN - SCOPUS:0028783419

VL - 177

SP - 6773

EP - 6781

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 23

ER -