Targeted drug delivery for treatment and imaging of glioblastoma multiforme

Jill M. Stukel, Michael Caplan

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.

Original languageEnglish (US)
Pages (from-to)705-718
Number of pages14
JournalExpert Opinion on Drug Delivery
Volume6
Issue number7
DOIs
StatePublished - Jul 2009

Fingerprint

Glioblastoma
Convection
Blood-Brain Barrier
Pharmaceutical Preparations
Neoplasms
Therapeutics
Glioma
Research Personnel
Radiation
Recurrence
Drug Therapy
Mortality
Research

Keywords

  • Convection enhanced delivery
  • Drug delivery
  • Glioblastoma
  • Molecular targeting

ASJC Scopus subject areas

  • Pharmaceutical Science

Cite this

Targeted drug delivery for treatment and imaging of glioblastoma multiforme. / Stukel, Jill M.; Caplan, Michael.

In: Expert Opinion on Drug Delivery, Vol. 6, No. 7, 07.2009, p. 705-718.

Research output: Contribution to journalArticle

Stukel, Jill M. ; Caplan, Michael. / Targeted drug delivery for treatment and imaging of glioblastoma multiforme. In: Expert Opinion on Drug Delivery. 2009 ; Vol. 6, No. 7. pp. 705-718.
@article{42b7a8ab74b24bcbbb3c0f966a64f4b8,
title = "Targeted drug delivery for treatment and imaging of glioblastoma multiforme",
abstract = "Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.",
keywords = "Convection enhanced delivery, Drug delivery, Glioblastoma, Molecular targeting",
author = "Stukel, {Jill M.} and Michael Caplan",
year = "2009",
month = "7",
doi = "10.1517/17425240902988470",
language = "English (US)",
volume = "6",
pages = "705--718",
journal = "Expert Opinion on Drug Delivery",
issn = "1742-5247",
publisher = "Informa Healthcare",
number = "7",

}

TY - JOUR

T1 - Targeted drug delivery for treatment and imaging of glioblastoma multiforme

AU - Stukel, Jill M.

AU - Caplan, Michael

PY - 2009/7

Y1 - 2009/7

N2 - Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.

AB - Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than ~ 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.

KW - Convection enhanced delivery

KW - Drug delivery

KW - Glioblastoma

KW - Molecular targeting

UR - http://www.scopus.com/inward/record.url?scp=67650378966&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650378966&partnerID=8YFLogxK

U2 - 10.1517/17425240902988470

DO - 10.1517/17425240902988470

M3 - Article

VL - 6

SP - 705

EP - 718

JO - Expert Opinion on Drug Delivery

JF - Expert Opinion on Drug Delivery

SN - 1742-5247

IS - 7

ER -