Synthesis of Honeycomb-Structured Beryllium Oxide via Graphene Liquid Cells

Lifen Wang, Lei Liu, Ji Chen, Ali Mohsin, Jung Hwan Yum, Todd W. Hudnall, Christopher W. Bielawski, Tijana Rajh, Xuedong Bai, Shang Peng Gao, Gong Gu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.

Original languageEnglish (US)
Pages (from-to)15734-15740
Number of pages7
JournalAngewandte Chemie - International Edition
Volume59
Issue number36
DOIs
StatePublished - Sep 1 2020
Externally publishedYes

Keywords

  • aqueous-solution synthesis
  • beryllium oxide
  • graphene liquid cells
  • high-resolution transmission electron microscopy
  • structural phase transition
  • thermodynamic ultra-thin limit

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Synthesis of Honeycomb-Structured Beryllium Oxide via Graphene Liquid Cells'. Together they form a unique fingerprint.

Cite this