Symmetry breaking and pivotal individuals during the reunification of ant colonies

Grant Navid Doering, Stephen C. Pratt

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Maintenance of a social group requires the ability to reach consensus when faced with divisive choices. Thus, when migrating colonies of the ant Temnothorax rugatulus split among multiple sites, they can later reunify on the basis of queen location or differences in site quality. In this study, we found that colonies can reunify even without obvious cues to break the symmetry between sites. To learn how they do so, we observed both symmetric reunifications (between identical nests) and asymmetric reunifications (between nests of unequal quality) by colonies of individually marked ants. Both reunification types were accomplished by a tiny minority that carried nestmates from the ‘losing’ to the ‘winning’ site. Reunification effort was highly skewed in asymmetric splits, where the majority of the work was done by the first ant to transport, which nearly always came from the winning site. This contrasted with symmetric splits, where the initiator did not play an outsize role and was just as likely to come from the losing site. Symmetric reunifications were also characterized by high transporter attrition, which may help to prevent deadlocks. Tandem runs were abundant in both types and were typically led by transporters as they returned to the losing site to fetch another nestmate. Few tandem followers joined the transport effort, suggesting that tandem runs do not serve to recruit transporters but may have another, as yet unidentified role. Our results underscore the potentially large contribution of highly active individuals to group behaviour, even in decentralized societies such as ant colonies.

Original languageEnglish (US)
Article numberjeb194019
JournalJournal of Experimental Biology
Volume222
Issue number5
DOIs
StatePublished - 2019

Keywords

  • Consensus decision making
  • Emigration
  • Polydomy
  • Tandem running
  • Temnothorax

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Fingerprint

Dive into the research topics of 'Symmetry breaking and pivotal individuals during the reunification of ant colonies'. Together they form a unique fingerprint.

Cite this