Surface modification of TiO2: Correlation between structure, charge separation and reduction properties

Marion C. Thurnauer, Tijana Rajh, David M. Tiede

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Surface complexation of colloidal titanium dioxide nanoparticles (40 Å, anatase structure) by α-mercapto-substituted carboxylic acids results in the formation of a charge transfer complex with an optical absorption threshold at 520 nm. It was found by EPR spectroscopy that illumination of these surface-modified TiO2 particles, which leads to the charge transfer complex and/or band gap excitation, results in the efficient spatial separation of photoinduced charges. Photogenerated holes are transferred to the derivatives at 4.2 K, while photogenerated electrons are trapped on the TiO2 particle. Visible excitation (400 nm cut-off filter) results in localization of photogenerated holes on the carboxy group, while UV excitation results in localization on the most distant hydrocarbon group of the derivative. Both band gap and CT excitation of TiO2 lead to the reduction of Pb2+ ions to metallic lead (Eo = -0.126 V vs. NHE), while only band gap excitation leads to the reduction of Cd2+ ions to its metallic form (Eo= -0.405 V). The EPR signal for trapped electrons disappeared as a result of the reduction of Pb2+ or Cd 2+ ions, and metallic lead was observed to precipitate.

Original languageEnglish (US)
Pages (from-to)610-618
Number of pages9
JournalActa Chemica Scandinavica
Volume51
Issue number5
DOIs
StatePublished - May 1997
Externally publishedYes

ASJC Scopus subject areas

  • Chemical Engineering(all)

Fingerprint

Dive into the research topics of 'Surface modification of TiO<sub>2</sub>: Correlation between structure, charge separation and reduction properties'. Together they form a unique fingerprint.

Cite this