Surface Energy as a Descriptor of Catalytic Activity

Houlong Zhuang, Alexander J. Tkalych, Emily A. Carter

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Computational searches for catalysts of the hydrogen evolution reaction commonly use the hydrogen binding energy (HBE) as a predictor of catalytic activity. Accurate evaluation of the HBE, however, can involve large periodic supercell slab models that render high-throughput screening relatively expensive. In contrast, calculations of other relevant surface properties, such as the surface energy, work function, and potential of zero charge (PZC), require only small surface unit cells and are hence less expensive to compute. Correlations between catalytic activity and these surface properties warrant exploration because of this reduced computational cost. Here, we use density functional theory in conjunction with three different exchange-correlation functionals - the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the PBEsol functional (a reparameterization of the PBE functional) - to calculate the lattice constants, surface energy, cohesive energy, and work function of six common catalysts: three metals (Au, Pd, and Pt) and three transition-metal carbides (TMCs; WC, W2C, and Mo2C). The three exchange-correlation functionals produce identical trends, and PBEsol yields results between those calculated using LDA and PBE and most often closer to experiment. We therefore use PBEsol to obtain the surface energy, work function, and PZC of nine novel hybrid catalysts, each containing a metal monolayer on a TMC substrate. Importantly, a volcano-shaped correlation between the experimental exchange current density and the theoretical surface energies emerges. We also investigate solvation effects on the surface energy and work function using a polarizable continuum model within the framework of joint density functional theory. For these particular materials, the surface energies in vacuum are nearly unchanged upon exposure to an aqueous solution, prior to any reaction with water. The volcano-shaped correlation observed between the exchange current densities and the surface energies is not observed for the work function or PZC. Our work thus reveals opportunities for more rapid computational screening of reduced Pt-loading catalysts using the surface energy as a computationally efficient catalytic descriptor.

Original languageEnglish (US)
Pages (from-to)23698-23706
Number of pages9
JournalJournal of Physical Chemistry C
Volume120
Issue number41
DOIs
StatePublished - Oct 20 2016
Externally publishedYes

Fingerprint

Interfacial energy
surface energy
catalytic activity
Catalyst activity
catalysts
Hydrogen
Local density approximation
Catalysts
Volcanoes
Binding energy
functionals
volcanoes
surface properties
Surface properties
Density functional theory
Screening
Current density
hydrogen
screening
binding energy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this

Surface Energy as a Descriptor of Catalytic Activity. / Zhuang, Houlong; Tkalych, Alexander J.; Carter, Emily A.

In: Journal of Physical Chemistry C, Vol. 120, No. 41, 20.10.2016, p. 23698-23706.

Research output: Contribution to journalArticle

Zhuang, Houlong ; Tkalych, Alexander J. ; Carter, Emily A. / Surface Energy as a Descriptor of Catalytic Activity. In: Journal of Physical Chemistry C. 2016 ; Vol. 120, No. 41. pp. 23698-23706.
@article{98204d427afd45aea6f0f134e0aad7cb,
title = "Surface Energy as a Descriptor of Catalytic Activity",
abstract = "Computational searches for catalysts of the hydrogen evolution reaction commonly use the hydrogen binding energy (HBE) as a predictor of catalytic activity. Accurate evaluation of the HBE, however, can involve large periodic supercell slab models that render high-throughput screening relatively expensive. In contrast, calculations of other relevant surface properties, such as the surface energy, work function, and potential of zero charge (PZC), require only small surface unit cells and are hence less expensive to compute. Correlations between catalytic activity and these surface properties warrant exploration because of this reduced computational cost. Here, we use density functional theory in conjunction with three different exchange-correlation functionals - the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the PBEsol functional (a reparameterization of the PBE functional) - to calculate the lattice constants, surface energy, cohesive energy, and work function of six common catalysts: three metals (Au, Pd, and Pt) and three transition-metal carbides (TMCs; WC, W2C, and Mo2C). The three exchange-correlation functionals produce identical trends, and PBEsol yields results between those calculated using LDA and PBE and most often closer to experiment. We therefore use PBEsol to obtain the surface energy, work function, and PZC of nine novel hybrid catalysts, each containing a metal monolayer on a TMC substrate. Importantly, a volcano-shaped correlation between the experimental exchange current density and the theoretical surface energies emerges. We also investigate solvation effects on the surface energy and work function using a polarizable continuum model within the framework of joint density functional theory. For these particular materials, the surface energies in vacuum are nearly unchanged upon exposure to an aqueous solution, prior to any reaction with water. The volcano-shaped correlation observed between the exchange current densities and the surface energies is not observed for the work function or PZC. Our work thus reveals opportunities for more rapid computational screening of reduced Pt-loading catalysts using the surface energy as a computationally efficient catalytic descriptor.",
author = "Houlong Zhuang and Tkalych, {Alexander J.} and Carter, {Emily A.}",
year = "2016",
month = "10",
day = "20",
doi = "10.1021/acs.jpcc.6b09687",
language = "English (US)",
volume = "120",
pages = "23698--23706",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "41",

}

TY - JOUR

T1 - Surface Energy as a Descriptor of Catalytic Activity

AU - Zhuang, Houlong

AU - Tkalych, Alexander J.

AU - Carter, Emily A.

PY - 2016/10/20

Y1 - 2016/10/20

N2 - Computational searches for catalysts of the hydrogen evolution reaction commonly use the hydrogen binding energy (HBE) as a predictor of catalytic activity. Accurate evaluation of the HBE, however, can involve large periodic supercell slab models that render high-throughput screening relatively expensive. In contrast, calculations of other relevant surface properties, such as the surface energy, work function, and potential of zero charge (PZC), require only small surface unit cells and are hence less expensive to compute. Correlations between catalytic activity and these surface properties warrant exploration because of this reduced computational cost. Here, we use density functional theory in conjunction with three different exchange-correlation functionals - the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the PBEsol functional (a reparameterization of the PBE functional) - to calculate the lattice constants, surface energy, cohesive energy, and work function of six common catalysts: three metals (Au, Pd, and Pt) and three transition-metal carbides (TMCs; WC, W2C, and Mo2C). The three exchange-correlation functionals produce identical trends, and PBEsol yields results between those calculated using LDA and PBE and most often closer to experiment. We therefore use PBEsol to obtain the surface energy, work function, and PZC of nine novel hybrid catalysts, each containing a metal monolayer on a TMC substrate. Importantly, a volcano-shaped correlation between the experimental exchange current density and the theoretical surface energies emerges. We also investigate solvation effects on the surface energy and work function using a polarizable continuum model within the framework of joint density functional theory. For these particular materials, the surface energies in vacuum are nearly unchanged upon exposure to an aqueous solution, prior to any reaction with water. The volcano-shaped correlation observed between the exchange current densities and the surface energies is not observed for the work function or PZC. Our work thus reveals opportunities for more rapid computational screening of reduced Pt-loading catalysts using the surface energy as a computationally efficient catalytic descriptor.

AB - Computational searches for catalysts of the hydrogen evolution reaction commonly use the hydrogen binding energy (HBE) as a predictor of catalytic activity. Accurate evaluation of the HBE, however, can involve large periodic supercell slab models that render high-throughput screening relatively expensive. In contrast, calculations of other relevant surface properties, such as the surface energy, work function, and potential of zero charge (PZC), require only small surface unit cells and are hence less expensive to compute. Correlations between catalytic activity and these surface properties warrant exploration because of this reduced computational cost. Here, we use density functional theory in conjunction with three different exchange-correlation functionals - the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the PBEsol functional (a reparameterization of the PBE functional) - to calculate the lattice constants, surface energy, cohesive energy, and work function of six common catalysts: three metals (Au, Pd, and Pt) and three transition-metal carbides (TMCs; WC, W2C, and Mo2C). The three exchange-correlation functionals produce identical trends, and PBEsol yields results between those calculated using LDA and PBE and most often closer to experiment. We therefore use PBEsol to obtain the surface energy, work function, and PZC of nine novel hybrid catalysts, each containing a metal monolayer on a TMC substrate. Importantly, a volcano-shaped correlation between the experimental exchange current density and the theoretical surface energies emerges. We also investigate solvation effects on the surface energy and work function using a polarizable continuum model within the framework of joint density functional theory. For these particular materials, the surface energies in vacuum are nearly unchanged upon exposure to an aqueous solution, prior to any reaction with water. The volcano-shaped correlation observed between the exchange current densities and the surface energies is not observed for the work function or PZC. Our work thus reveals opportunities for more rapid computational screening of reduced Pt-loading catalysts using the surface energy as a computationally efficient catalytic descriptor.

UR - http://www.scopus.com/inward/record.url?scp=84992347172&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84992347172&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.6b09687

DO - 10.1021/acs.jpcc.6b09687

M3 - Article

VL - 120

SP - 23698

EP - 23706

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 41

ER -