TY - JOUR
T1 - Suitability of an algal biofuel species, Scenedesmus acutus, as a fertilizer for growth of conventional and genetically modified lettuce
AU - Chan, Neng Iong
AU - Rittmann, Bruce E.
AU - Elser, James
N1 - Publisher Copyright:
© This is an open access article distributed under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
PY - 2021/5
Y1 - 2021/5
N2 - Nitrogen (N) and phosphorus (P) are important elements for global food production, but these nutrients cause pollution in water bodies without proper management. Furthermore, P is a finite resource with geologic reserves that are geographically restricted. Thus, sustainable use of P in agriculture has been the subject of much research over the past decade. This study jointly examines two examples of potential sustainability measures to address nutrient challenges: improved crop varieties and use of recycled fertilizers. We tested the effectiveness of dried biomass of a freshwater alga (Scenedesmus acutus) as a fertilizer with conventional lettuce [Lactuca sativa cv. Conquistador; WT (wild-type)] and genetically modified lettuce of the same variety that was transformed for improved nutrient-use efficiency [(type I Arabidopsis Vacuolar Pyrophosphatase (AVP1)]. In greenhouse conditions, we measured yield, soil nutrient content and losses, and soil P fractions after application of dried S. acutus biomass at different rates, with and without supplemental additions of conventional fertilizer. Yield was higher with commercial fertilizer compared with algal fertilizer, and AVP1 lettuce consistently produced better yield than the conventional lettuce with both fertilizer types, although the effect was stronger with the algal treatments. Soil P was mostly sequestered in the pools of NaHCO3-extractable organic P, NaOH-extractable organic P, and HCl-extractable P, which are poorly available. Although the algal fertilizer was ineffective in supporting short-term growth, the P was retained in the soils, which may improve soil fertility in the long term.
AB - Nitrogen (N) and phosphorus (P) are important elements for global food production, but these nutrients cause pollution in water bodies without proper management. Furthermore, P is a finite resource with geologic reserves that are geographically restricted. Thus, sustainable use of P in agriculture has been the subject of much research over the past decade. This study jointly examines two examples of potential sustainability measures to address nutrient challenges: improved crop varieties and use of recycled fertilizers. We tested the effectiveness of dried biomass of a freshwater alga (Scenedesmus acutus) as a fertilizer with conventional lettuce [Lactuca sativa cv. Conquistador; WT (wild-type)] and genetically modified lettuce of the same variety that was transformed for improved nutrient-use efficiency [(type I Arabidopsis Vacuolar Pyrophosphatase (AVP1)]. In greenhouse conditions, we measured yield, soil nutrient content and losses, and soil P fractions after application of dried S. acutus biomass at different rates, with and without supplemental additions of conventional fertilizer. Yield was higher with commercial fertilizer compared with algal fertilizer, and AVP1 lettuce consistently produced better yield than the conventional lettuce with both fertilizer types, although the effect was stronger with the algal treatments. Soil P was mostly sequestered in the pools of NaHCO3-extractable organic P, NaOH-extractable organic P, and HCl-extractable P, which are poorly available. Although the algal fertilizer was ineffective in supporting short-term growth, the P was retained in the soils, which may improve soil fertility in the long term.
KW - Algae
KW - Biomass yield
KW - Fertilizer
KW - Lettuce
KW - Phosphorus
UR - http://www.scopus.com/inward/record.url?scp=85106624126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106624126&partnerID=8YFLogxK
U2 - 10.21273/HORTSCI15709-21
DO - 10.21273/HORTSCI15709-21
M3 - Article
AN - SCOPUS:85106624126
VL - 56
SP - 589
EP - 594
JO - Hortscience: A Publication of the American Society for Hortcultural Science
JF - Hortscience: A Publication of the American Society for Hortcultural Science
SN - 0018-5345
IS - 5
ER -