TY - GEN
T1 - Subgraph detection using eigenvector L1 norms
AU - Miller, Benjamin A.
AU - Bliss, Nadya T.
AU - Wolfe, Patrick J.
PY - 2010/12/1
Y1 - 2010/12/1
N2 - When working with network datasets, the theoretical framework of detection theory for Euclidean vector spaces no longer applies. Nevertheless, it is desirable to determine the detectability of small, anomalous graphs embedded into background networks with known statistical properties. Casting the problem of subgraph detection in a signal processing context, this article provides a framework and empirical results that elucidate a "detection theory" for graph-valued data. Its focus is the detection of anomalies in unweighted, undirected graphs through L 1 properties of the eigenvectors of the graph's so-called modularity matrix. This metric is observed to have relatively low variance for certain categories of randomly-generated graphs, and to reveal the presence of an anomalous subgraph with reasonable reliability when the anomaly is not well-correlated with stronger portions of the background graph. An analysis of subgraphs in real network datasets confirms the efficacy of this approach.
AB - When working with network datasets, the theoretical framework of detection theory for Euclidean vector spaces no longer applies. Nevertheless, it is desirable to determine the detectability of small, anomalous graphs embedded into background networks with known statistical properties. Casting the problem of subgraph detection in a signal processing context, this article provides a framework and empirical results that elucidate a "detection theory" for graph-valued data. Its focus is the detection of anomalies in unweighted, undirected graphs through L 1 properties of the eigenvectors of the graph's so-called modularity matrix. This metric is observed to have relatively low variance for certain categories of randomly-generated graphs, and to reveal the presence of an anomalous subgraph with reasonable reliability when the anomaly is not well-correlated with stronger portions of the background graph. An analysis of subgraphs in real network datasets confirms the efficacy of this approach.
UR - http://www.scopus.com/inward/record.url?scp=84860608460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860608460&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84860608460
SN - 9781617823800
T3 - Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
BT - Advances in Neural Information Processing Systems 23
T2 - 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Y2 - 6 December 2010 through 9 December 2010
ER -