Studying very low resolution recognition using deep networks

Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

111 Scopus citations

Abstract

Visual recognition research often assumes a sufficient resolution of the region of interest (ROI). That is usually violated in practice, inspiring us to explore the Very Low Resolution Recognition (VLRR) problem. Typically, the ROI in a VLRR problem can be smaller than 16 16 pixels, and is challenging to be recognized even by human experts. We attempt to solve the VLRR problem using deep learning methods. Taking advantage of techniques primarily in super resolution, domain adaptation and robust regression, we formulate a dedicated deep learning method and demonstrate how these techniques are incorporated step by step. Any extra complexity, when introduced, is fully justified by both analysis and simulation results. The resulting Robust Partially Coupled Networks achieves feature enhancement and recognition simultaneously. It allows for both the flexibility to combat the LR-HR domain mismatch, and the robustness to outliers. Finally, the effectiveness of the proposed models is evaluated on three different VLRR tasks, including face identification, digit recognition and font recognition, all of which obtain very impressive performances.

Original languageEnglish (US)
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages4792-4800
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - Dec 9 2016
Externally publishedYes
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Studying very low resolution recognition using deep networks'. Together they form a unique fingerprint.

Cite this