Study of a two species microbial community by an inferential comparative genomic analysis tool: Spatial Analytical Microbial Imaging

Pei Zhang, Paloma Valverde, Douglas Daniel, Peter Fox

Research output: Contribution to journalArticlepeer-review

Abstract

Most molecular fingerprinting techniques, including denaturing gradient gel electrophoresis (DGGE) [1], comparative genomic hybridization (CGH) [2], real-time polymerase chain reaction (RT-PCR) [3], destroy community structure and/or cellular integrity, therefore lost the info. of the spatial locus and the in situ genomic copy number of the cells. An alternative technique, fluorescence in situ hybridization (FISH) doesn't require sample disintegration but needs to develop specific markers and doesn't provide info. related to genomic copy number. Here, a microbial analysis tool, Spatial Analytical Microbial Imaging (SAMI), is described. An application was performed with a mixture of Synechocystis sp. PCC 6803 and E. coli K-12 MG1655. The intrinsic property of their genome, reflected by the average fluorescence intensity (AFI), distinguished them in 3D. And their growth rates were inferred by comparing the total genomic fluorescence binding area (GFA) with that of the pure culture standards. A 93% of accuracy in differentiating the species was achieved. SAMI does not require sample disintegration and preserves the community spatial structure.It measures the 3D locus of cells within the mixture and may differentiate them according to the property of their genome.It allows assessment of the growth rate of the cells within the mixture by comparing their genomic copy number with that of the pure culture standards.

Original languageEnglish (US)
Pages (from-to)331-339
Number of pages9
JournalMethodsX
Volume2
DOIs
StatePublished - Jul 25 2015

Keywords

  • Methods name Spatial Analytical Microbial Imaging

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Medical Laboratory Technology

Fingerprint

Dive into the research topics of 'Study of a two species microbial community by an inferential comparative genomic analysis tool: Spatial Analytical Microbial Imaging'. Together they form a unique fingerprint.

Cite this