Structure of the catalytically active copper–ceria interfacial perimeter

Aling Chen, Xiaojuan Yu, Yan Zhou, Shu Miao, Yong Li, Sebastian Kuld, Jens Sehested, Jingyue Liu, Toshihiro Aoki, Song Hong, Matteo Farnesi Camellone, Stefano Fabris, Jing Ning, Chuanchuan Jin, Chengwu Yang, Alexei Nefedov, Christof Wöll, Yuemin Wang, Wenjie Shen

Research output: Contribution to journalArticlepeer-review

252 Scopus citations


Cu/CeO 2 catalysts are highly active for the low-temperature water–gas shift—a core reaction in syngas chemistry for tuning the H 2 /CO/CO 2 proportions in feed streams—but the direct identification and quantitative description of the active sites remain challenging. Here we report that the active copper clusters consist of a bottom layer of mainly Cu + atoms bonded on the oxygen vacancies (O v ) of ceria, in a form of Cu + –O v –Ce 3+ , and a top layer of Cu 0 atoms coordinated with the underlying Cu + atoms. This atomic structure model is based on directly observing copper clusters dispersed on ceria by a combination of scanning transmission electron microscopy and electron energy loss spectroscopy, in situ probing of the interfacial copper–ceria bonding environment by infrared spectroscopy and rationalization by density functional theory calculations. These results, together with reaction kinetics, reveal that the reaction occurs at the copper–ceria interfacial perimeter via a site cooperation mechanism: the Cu + site chemically adsorbs CO whereas the neighbouring O v –Ce 3+ site dissociatively activates H 2 O.

Original languageEnglish (US)
Pages (from-to)334-341
Number of pages8
JournalNature Catalysis
Issue number4
StatePublished - Apr 1 2019

ASJC Scopus subject areas

  • Catalysis
  • Bioengineering
  • Biochemistry
  • Process Chemistry and Technology


Dive into the research topics of 'Structure of the catalytically active copper–ceria interfacial perimeter'. Together they form a unique fingerprint.

Cite this