TY - JOUR
T1 - Structural, electrical, and terahertz transmission properties of VO 2 thin films grown on c-, r-, and m-plane sapphire substrates
AU - Zhao, Yong
AU - Hwan Lee, Joon
AU - Zhu, Yanhan
AU - Nazari, M.
AU - Chen, Changhong
AU - Wang, Haiyan
AU - Bernussi, Ayrton
AU - Holtz, Mark
AU - Fan, Zhaoyang
N1 - Funding Information:
The authors acknowledge support for this work from National Science Foundation (ECCS-1128644). The TEM effort at Texas A&M University is supported by National Science Foundation (NSF-0846504).
PY - 2012/3/1
Y1 - 2012/3/1
N2 - The structure, metal-insulator transition (MIT), and related Terahertz (THz) transmission characteristics of VO 2 thin films obtained by sputtering deposition on c-, r-, and m-plane sapphire substrates were investigated by different techniques. On c-sapphire, monoclinic VO 2 films were characterized to be epitaxial films with triple domain structure caused by -angle mismatch. Monoclinic VO 2 β angle of 122.2° and the two angles of V 4+-V 4+ chain deviating from the a m axis of 4.4 and 4.3° are determined. On r-sapphire, tetragonal VO 2 was determined to be epitaxially deposited with VO 2 (011) T perpendicular to the growth direction, while the structural phase transformation into lower symmetric monoclinic phase results in (2 11) and (200) orientations forming a twinned structure. VO 2 on m-sapphire has several growth orientations, related with the uneven substrate surface and possible inter-diffusion between film and substrate. Measurements of the electrical properties show that the sample on r-sapphire has MIT property superior to the other two samples, with a resistivity change as large as 9 × 10 4 times and a transition window as narrow as 3.9 K, and it has the highest resistivity with the lowest free carrier density in the insulating phase. THz transmission measurements on VO 2 films grown on r-plane sapphire substrates revealed intensity modulation depth as large as 98 over a broadband THz region, suggesting that VO 2 films are ideal material candidates for THz modulation applications.
AB - The structure, metal-insulator transition (MIT), and related Terahertz (THz) transmission characteristics of VO 2 thin films obtained by sputtering deposition on c-, r-, and m-plane sapphire substrates were investigated by different techniques. On c-sapphire, monoclinic VO 2 films were characterized to be epitaxial films with triple domain structure caused by -angle mismatch. Monoclinic VO 2 β angle of 122.2° and the two angles of V 4+-V 4+ chain deviating from the a m axis of 4.4 and 4.3° are determined. On r-sapphire, tetragonal VO 2 was determined to be epitaxially deposited with VO 2 (011) T perpendicular to the growth direction, while the structural phase transformation into lower symmetric monoclinic phase results in (2 11) and (200) orientations forming a twinned structure. VO 2 on m-sapphire has several growth orientations, related with the uneven substrate surface and possible inter-diffusion between film and substrate. Measurements of the electrical properties show that the sample on r-sapphire has MIT property superior to the other two samples, with a resistivity change as large as 9 × 10 4 times and a transition window as narrow as 3.9 K, and it has the highest resistivity with the lowest free carrier density in the insulating phase. THz transmission measurements on VO 2 films grown on r-plane sapphire substrates revealed intensity modulation depth as large as 98 over a broadband THz region, suggesting that VO 2 films are ideal material candidates for THz modulation applications.
UR - http://www.scopus.com/inward/record.url?scp=84858964933&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858964933&partnerID=8YFLogxK
U2 - 10.1063/1.3692391
DO - 10.1063/1.3692391
M3 - Article
AN - SCOPUS:84858964933
SN - 0021-8979
VL - 111
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 5
M1 - 053533
ER -