TY - JOUR

T1 - Static and dynamic critical phenomena at a second order QCD phase transition

AU - Rajagopal, Krishna

AU - Wilczek, Frank

N1 - Funding Information:
* Research supported in part by a Natural Sciences and Engineering Research Council of Canada
Funding Information:
1967 Fellowship. * * Research supported in part by DOE grand DE-FGO2-90ER40542.

PY - 1993/7/5

Y1 - 1993/7/5

N2 - In QCD with two flavors of massless quarks, the chiral phase transition is plausibly in the same universality class as the classical four-component Heisenberg antiferromagnet. Therefore, renormalization group techniques developed in the study of phase transitions can be applied to calculate the critical exponents which characterize the scaling behaviour of universal quantities near the critical point. This approach to the QCD phase transition has implications both for lattice gauge theory and for heavy ion collisions. Future lattice simulations with longer correlation lengths will be able to measure the various exponents and the equation of state for the order parameter as a function of temperature and quark mass which we describe. In a heavy ion collision, the consequence of a long correlation length would be large fluctuations in the number ratio of neutral to charged pions. Unfortunately, we show that this phenomenon will not occur if the plasma stays close to equilibrium as it cools. If the transition is far out of equilibrium and can be modelled as a quench, it is possible that large volumes of the plasma with the pion field oscillating coherently will develop, with dramatic phenomenological consequences.

AB - In QCD with two flavors of massless quarks, the chiral phase transition is plausibly in the same universality class as the classical four-component Heisenberg antiferromagnet. Therefore, renormalization group techniques developed in the study of phase transitions can be applied to calculate the critical exponents which characterize the scaling behaviour of universal quantities near the critical point. This approach to the QCD phase transition has implications both for lattice gauge theory and for heavy ion collisions. Future lattice simulations with longer correlation lengths will be able to measure the various exponents and the equation of state for the order parameter as a function of temperature and quark mass which we describe. In a heavy ion collision, the consequence of a long correlation length would be large fluctuations in the number ratio of neutral to charged pions. Unfortunately, we show that this phenomenon will not occur if the plasma stays close to equilibrium as it cools. If the transition is far out of equilibrium and can be modelled as a quench, it is possible that large volumes of the plasma with the pion field oscillating coherently will develop, with dramatic phenomenological consequences.

UR - http://www.scopus.com/inward/record.url?scp=13544261172&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=13544261172&partnerID=8YFLogxK

U2 - 10.1016/0550-3213(93)90502-G

DO - 10.1016/0550-3213(93)90502-G

M3 - Article

AN - SCOPUS:13544261172

VL - 399

SP - 395

EP - 425

JO - Nuclear Physics B

JF - Nuclear Physics B

SN - 0550-3213

IS - 2-3

ER -