Stabilizing stretch reflexes are modulated independently from the rapid release of perturbation-triggered motor plans

Hyunglae Lee, Eric J. Perreault

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Responses elicited after the shortest latency spinal reflexes but prior to the onset of voluntary activity can display sophistication beyond a stereotypical reflex. Two distinct behaviors have been identified for these rapid motor responses, often called long-latency reflexes. The first is to maintain limb stability by opposing external perturbations. The second is to quickly release motor actions planned prior to the disturbance, often called a triggered reaction. This study investigated their interaction when motor tasks involve both limb stabilization and motor planning. We used a robotic manipulator to change the stability of the haptic environment during 2D arm reaching tasks, and to apply perturbations that could elicit rapid motor responses. Stabilizing reflexes were modulated by the orientation of the haptic environment (field effect) whereas triggered reactions were modulated by the target to which subjects were instructed to reach (target effect). We observed that there were no significant interactions between the target and field effects in the early (50–75 ms) portion of the long-latency reflex, indicating that these components of the rapid motor response are initially controlled independently. There were small but significant interactions for two of the six relevant muscles in the later portion (75–100 ms) of the reflex response. In addition, the target effect was influenced by the direction of the perturbation used to elicit the motor response, indicating a later feedback correction in addition to the early component of the triggered reaction. Together, these results demonstrate how distinct components of the long-latency reflex can work independently and together to generate sophisticated rapid motor responses that integrate planning with reaction to uncertain conditions.

Original languageEnglish (US)
Article number13926
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Stabilizing stretch reflexes are modulated independently from the rapid release of perturbation-triggered motor plans'. Together they form a unique fingerprint.

Cite this