Solid-state and vacuum thermionic energy conversion

A. Shakouri, Z. Bian, R. Singh, Y. Zhang, D. Vashaee, T. E. Humphrey, H. Schmidt, J. M. Zide, G. Zeng, J. H. Bahk, A. C. Gossard, J. E. Bowers, V. Rawat, T. D. Sands, W. Kim, S. Singer, A. Majumdar, P. M. Mayer, R. J. Ram, K. J. RusselV. Narayanamurti, F. A M Koeck, X. Li, J. S. Park, J. R. Smith, G. L. Bilbro, R. F. Davis, Z. Sitar, Robert Nemanich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposium Proceedings
Pages245-260
Number of pages16
Volume886
StatePublished - 2006
Externally publishedYes
Event2005 Materials Research Society Fall Meeting - Boston, MA, United States
Duration: Nov 28 2005Dec 1 2005

Other

Other2005 Materials Research Society Fall Meeting
CountryUnited States
CityBoston, MA
Period11/28/0512/1/05

Fingerprint

Energy conversion
Solid state devices
Thermionic emission
Diamond
Vacuum
Thin films
Thermionic power generation
Diamonds
Electron affinity
Carbon Nanotubes
Hot electrons
Thermoelectric power
Current voltage characteristics
Ballistics
Crystal lattices
Chemical elements
Power generation
Integrated circuits
Heterojunctions
Carbon nanotubes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Cite this

Shakouri, A., Bian, Z., Singh, R., Zhang, Y., Vashaee, D., Humphrey, T. E., ... Nemanich, R. (2006). Solid-state and vacuum thermionic energy conversion. In Materials Research Society Symposium Proceedings (Vol. 886, pp. 245-260)

Solid-state and vacuum thermionic energy conversion. / Shakouri, A.; Bian, Z.; Singh, R.; Zhang, Y.; Vashaee, D.; Humphrey, T. E.; Schmidt, H.; Zide, J. M.; Zeng, G.; Bahk, J. H.; Gossard, A. C.; Bowers, J. E.; Rawat, V.; Sands, T. D.; Kim, W.; Singer, S.; Majumdar, A.; Mayer, P. M.; Ram, R. J.; Russel, K. J.; Narayanamurti, V.; Koeck, F. A M; Li, X.; Park, J. S.; Smith, J. R.; Bilbro, G. L.; Davis, R. F.; Sitar, Z.; Nemanich, Robert.

Materials Research Society Symposium Proceedings. Vol. 886 2006. p. 245-260.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Shakouri, A, Bian, Z, Singh, R, Zhang, Y, Vashaee, D, Humphrey, TE, Schmidt, H, Zide, JM, Zeng, G, Bahk, JH, Gossard, AC, Bowers, JE, Rawat, V, Sands, TD, Kim, W, Singer, S, Majumdar, A, Mayer, PM, Ram, RJ, Russel, KJ, Narayanamurti, V, Koeck, FAM, Li, X, Park, JS, Smith, JR, Bilbro, GL, Davis, RF, Sitar, Z & Nemanich, R 2006, Solid-state and vacuum thermionic energy conversion. in Materials Research Society Symposium Proceedings. vol. 886, pp. 245-260, 2005 Materials Research Society Fall Meeting, Boston, MA, United States, 11/28/05.
Shakouri A, Bian Z, Singh R, Zhang Y, Vashaee D, Humphrey TE et al. Solid-state and vacuum thermionic energy conversion. In Materials Research Society Symposium Proceedings. Vol. 886. 2006. p. 245-260
Shakouri, A. ; Bian, Z. ; Singh, R. ; Zhang, Y. ; Vashaee, D. ; Humphrey, T. E. ; Schmidt, H. ; Zide, J. M. ; Zeng, G. ; Bahk, J. H. ; Gossard, A. C. ; Bowers, J. E. ; Rawat, V. ; Sands, T. D. ; Kim, W. ; Singer, S. ; Majumdar, A. ; Mayer, P. M. ; Ram, R. J. ; Russel, K. J. ; Narayanamurti, V. ; Koeck, F. A M ; Li, X. ; Park, J. S. ; Smith, J. R. ; Bilbro, G. L. ; Davis, R. F. ; Sitar, Z. ; Nemanich, Robert. / Solid-state and vacuum thermionic energy conversion. Materials Research Society Symposium Proceedings. Vol. 886 2006. pp. 245-260
@inproceedings{e58c25d5f4e34d94ac54d102c1da0bfb,
title = "Solid-state and vacuum thermionic energy conversion",
abstract = "A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20{\%} efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.",
author = "A. Shakouri and Z. Bian and R. Singh and Y. Zhang and D. Vashaee and Humphrey, {T. E.} and H. Schmidt and Zide, {J. M.} and G. Zeng and Bahk, {J. H.} and Gossard, {A. C.} and Bowers, {J. E.} and V. Rawat and Sands, {T. D.} and W. Kim and S. Singer and A. Majumdar and Mayer, {P. M.} and Ram, {R. J.} and Russel, {K. J.} and V. Narayanamurti and Koeck, {F. A M} and X. Li and Park, {J. S.} and Smith, {J. R.} and Bilbro, {G. L.} and Davis, {R. F.} and Z. Sitar and Robert Nemanich",
year = "2006",
language = "English (US)",
isbn = "1558998403",
volume = "886",
pages = "245--260",
booktitle = "Materials Research Society Symposium Proceedings",

}

TY - GEN

T1 - Solid-state and vacuum thermionic energy conversion

AU - Shakouri, A.

AU - Bian, Z.

AU - Singh, R.

AU - Zhang, Y.

AU - Vashaee, D.

AU - Humphrey, T. E.

AU - Schmidt, H.

AU - Zide, J. M.

AU - Zeng, G.

AU - Bahk, J. H.

AU - Gossard, A. C.

AU - Bowers, J. E.

AU - Rawat, V.

AU - Sands, T. D.

AU - Kim, W.

AU - Singer, S.

AU - Majumdar, A.

AU - Mayer, P. M.

AU - Ram, R. J.

AU - Russel, K. J.

AU - Narayanamurti, V.

AU - Koeck, F. A M

AU - Li, X.

AU - Park, J. S.

AU - Smith, J. R.

AU - Bilbro, G. L.

AU - Davis, R. F.

AU - Sitar, Z.

AU - Nemanich, Robert

PY - 2006

Y1 - 2006

N2 - A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

AB - A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

UR - http://www.scopus.com/inward/record.url?scp=33646266949&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646266949&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:33646266949

SN - 1558998403

SN - 9781558998407

VL - 886

SP - 245

EP - 260

BT - Materials Research Society Symposium Proceedings

ER -