Sol gel ZnO films doped with Mg and Li evaluated for charged particle detectors

John W. Murphy, Alexander Eddy, George R. Kunnen, Israel Mejia, Kurtis D. Cantley, David Allee, Manuel A. Quevedo-Lopez, Bruce E. Gnade

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work we assess the feasibility of ZnO films deposited from a sol gel precursor as a material for thin film charged particle detectors. There are many reports of polycrystalline ZnO thin film transistors (TFTs) in the literature, deposited by sputtering, pulsed laser deposition, and sol gel. There are also reports of sol gel derived ZnO doped with Li or Mg to increase the resistivity, however, these works only measure resistivity of the films, without determining the effect of doping on the carrier concentration. We study the effects of doping the ZnO with Mg and Li as well as the effects of thickness on the films' resistivity, mobility, and carrier concentration, since these material parameters are critical for a charged particle sensor. Carrier concentration is particularly important because it must be kept low in order for the intrinsic region of a p-i-n diode to be depleted. In order to accomplish this we fabricate and electrically characterize test tructures for resistivity, test structures for hall measurement, common back-gate TFTs, and metal-insulatorsemiconductor (MIS) capacitors. We also conduct physical characterization techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), electron microscopy, UV-Vis spectroscopy, and ellipsometry to determine the effect of doping and film thickness on the microstructure and optical properties of the ZnO.

Original languageEnglish (US)
Title of host publicationFlexible Electronics
DOIs
StatePublished - 2013
EventFlexible Electronics - Baltimore, MD, United States
Duration: May 1 2013May 2 2013

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8730
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherFlexible Electronics
Country/TerritoryUnited States
CityBaltimore, MD
Period5/1/135/2/13

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Sol gel ZnO films doped with Mg and Li evaluated for charged particle detectors'. Together they form a unique fingerprint.

Cite this