Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

D. Starodub, A. Aquila, S. Bajt, M. Barthelmess, A. Barty, C. Bostedt, J. D. Bozek, N. Coppola, R. B. Doak, S. W. Epp, B. Erk, L. Foucar, L. Gumprecht, C. Y. Hampton, A. Hartmann, R. Hartmann, P. Holl, S. Kassemeyer, N. Kimmel, H. LaksmonoM. Liang, N. D. Loh, L. Lomb, A. V. Martin, K. Nass, C. Reich, D. Rolles, B. Rudek, A. Rudenko, J. Schulz, R. L. Shoeman, R. G. Sierra, H. Soltau, J. Steinbrener, F. Stellato, S. Stern, G. Weidenspointner, M. Frank, J. Ullrich, L. Strüder, I. Schlichting, H. N. Chapman, John Spence, M. J. Bogan

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

Original languageEnglish (US)
Article number1276
JournalNature Communications
Volume3
DOIs
StatePublished - 2012

Fingerprint

Polystyrenes
Aerosols
X-Ray Diffraction
Nanoparticles
Diffraction patterns
Lasers
diffraction patterns
X-Rays
Electrons
Light
X ray diffraction
Free electron lasers
Macromolecules
Self assembly
Light sources
x rays
Demonstrations
Diffraction
Scattering
Imaging techniques

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)

Cite this

Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt, C., ... Bogan, M. J. (2012). Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nature Communications, 3, [1276]. https://doi.org/10.1038/ncomms2288

Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. / Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Doak, R. B.; Epp, S. W.; Erk, B.; Foucar, L.; Gumprecht, L.; Hampton, C. Y.; Hartmann, A.; Hartmann, R.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Laksmono, H.; Liang, M.; Loh, N. D.; Lomb, L.; Martin, A. V.; Nass, K.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Sierra, R. G.; Soltau, H.; Steinbrener, J.; Stellato, F.; Stern, S.; Weidenspointner, G.; Frank, M.; Ullrich, J.; Strüder, L.; Schlichting, I.; Chapman, H. N.; Spence, John; Bogan, M. J.

In: Nature Communications, Vol. 3, 1276, 2012.

Research output: Contribution to journalArticle

Starodub, D, Aquila, A, Bajt, S, Barthelmess, M, Barty, A, Bostedt, C, Bozek, JD, Coppola, N, Doak, RB, Epp, SW, Erk, B, Foucar, L, Gumprecht, L, Hampton, CY, Hartmann, A, Hartmann, R, Holl, P, Kassemeyer, S, Kimmel, N, Laksmono, H, Liang, M, Loh, ND, Lomb, L, Martin, AV, Nass, K, Reich, C, Rolles, D, Rudek, B, Rudenko, A, Schulz, J, Shoeman, RL, Sierra, RG, Soltau, H, Steinbrener, J, Stellato, F, Stern, S, Weidenspointner, G, Frank, M, Ullrich, J, Strüder, L, Schlichting, I, Chapman, HN, Spence, J & Bogan, MJ 2012, 'Single-particle structure determination by correlations of snapshot X-ray diffraction patterns', Nature Communications, vol. 3, 1276. https://doi.org/10.1038/ncomms2288
Starodub, D. ; Aquila, A. ; Bajt, S. ; Barthelmess, M. ; Barty, A. ; Bostedt, C. ; Bozek, J. D. ; Coppola, N. ; Doak, R. B. ; Epp, S. W. ; Erk, B. ; Foucar, L. ; Gumprecht, L. ; Hampton, C. Y. ; Hartmann, A. ; Hartmann, R. ; Holl, P. ; Kassemeyer, S. ; Kimmel, N. ; Laksmono, H. ; Liang, M. ; Loh, N. D. ; Lomb, L. ; Martin, A. V. ; Nass, K. ; Reich, C. ; Rolles, D. ; Rudek, B. ; Rudenko, A. ; Schulz, J. ; Shoeman, R. L. ; Sierra, R. G. ; Soltau, H. ; Steinbrener, J. ; Stellato, F. ; Stern, S. ; Weidenspointner, G. ; Frank, M. ; Ullrich, J. ; Strüder, L. ; Schlichting, I. ; Chapman, H. N. ; Spence, John ; Bogan, M. J. / Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. In: Nature Communications. 2012 ; Vol. 3.
@article{776111ca4bfb48d5923c7a01b9eeb4f5,
title = "Single-particle structure determination by correlations of snapshot X-ray diffraction patterns",
abstract = "Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.",
author = "D. Starodub and A. Aquila and S. Bajt and M. Barthelmess and A. Barty and C. Bostedt and Bozek, {J. D.} and N. Coppola and Doak, {R. B.} and Epp, {S. W.} and B. Erk and L. Foucar and L. Gumprecht and Hampton, {C. Y.} and A. Hartmann and R. Hartmann and P. Holl and S. Kassemeyer and N. Kimmel and H. Laksmono and M. Liang and Loh, {N. D.} and L. Lomb and Martin, {A. V.} and K. Nass and C. Reich and D. Rolles and B. Rudek and A. Rudenko and J. Schulz and Shoeman, {R. L.} and Sierra, {R. G.} and H. Soltau and J. Steinbrener and F. Stellato and S. Stern and G. Weidenspointner and M. Frank and J. Ullrich and L. Str{\"u}der and I. Schlichting and Chapman, {H. N.} and John Spence and Bogan, {M. J.}",
year = "2012",
doi = "10.1038/ncomms2288",
language = "English (US)",
volume = "3",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

AU - Starodub, D.

AU - Aquila, A.

AU - Bajt, S.

AU - Barthelmess, M.

AU - Barty, A.

AU - Bostedt, C.

AU - Bozek, J. D.

AU - Coppola, N.

AU - Doak, R. B.

AU - Epp, S. W.

AU - Erk, B.

AU - Foucar, L.

AU - Gumprecht, L.

AU - Hampton, C. Y.

AU - Hartmann, A.

AU - Hartmann, R.

AU - Holl, P.

AU - Kassemeyer, S.

AU - Kimmel, N.

AU - Laksmono, H.

AU - Liang, M.

AU - Loh, N. D.

AU - Lomb, L.

AU - Martin, A. V.

AU - Nass, K.

AU - Reich, C.

AU - Rolles, D.

AU - Rudek, B.

AU - Rudenko, A.

AU - Schulz, J.

AU - Shoeman, R. L.

AU - Sierra, R. G.

AU - Soltau, H.

AU - Steinbrener, J.

AU - Stellato, F.

AU - Stern, S.

AU - Weidenspointner, G.

AU - Frank, M.

AU - Ullrich, J.

AU - Strüder, L.

AU - Schlichting, I.

AU - Chapman, H. N.

AU - Spence, John

AU - Bogan, M. J.

PY - 2012

Y1 - 2012

N2 - Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

AB - Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

UR - http://www.scopus.com/inward/record.url?scp=84871807810&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871807810&partnerID=8YFLogxK

U2 - 10.1038/ncomms2288

DO - 10.1038/ncomms2288

M3 - Article

C2 - 23232406

AN - SCOPUS:84871807810

VL - 3

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 1276

ER -