Shock conditions recorded in NWA 8159 martian augite basalt with implications for the impact cratering history on Mars

Thomas Sharp, Erin L. Walton, Jinping Hu, Carl Agee

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

NWA 8159 is an augite-rich martian basalt, formed by cooling of a relatively evolved, Ca-rich, Ti-poor and LREE-depleted lava, under relatively oxidizing conditions, during the early Amazonian. In addition to its distinct igneous petrogenesis and high fO2, NWA 8159 is also set apart from most martian shergottites with respect to the low degree of shock metamorphism required to preserve crystalline igneous plagioclase (An50–65). In this study, mineral transformations within and adjacent to shock veins in NWA 8159 were investigated using scanning electron microscopy, Raman spectroscopy and transmission electron microscopy to better constrain the unusal shock history of this meteorite. The transformation of olivine to ahrensite (Fe-ringwoodite) along shock vein margins, and tissintite and coesite formed from igneous mineral (labradorite and silica) grains entrained as clasts within shock veins has been documented in this study. We report on a previously unidentified mineral assemblage of Ca-Na-majoritic garnet, sodic-clinopyroxene and stishovite crystallized from shock melt. This mineral assemblage indicates a crystallization pressure of approximately 16 GPa, which is within the range of previous shock pressure estimates for this meteorite (15–23 GPa). The presence of a majoritic garnet-bearing assemblage throughout veins up to 0.6 mm wide indicates that the sample remained at high-pressure throughout the melt vein quench. Based on thermal models, the sample must have remained at high pressure for ∼100 ms. This shock duration is an order of magnitude longer than those experienced by more highly shocked shergottites such as Tissint or Zagami (>30 GPa; 10–20 ms) and would seem to imply a relatively large impact event. Recent numerical models demonstrate that a range of shock pressures and durations are realized by rocks within the ejected spall zone of a hypervelocity impact. The shock conditions experienced by NWA 8159 therefore do not require an impact event distinct from other shergottites. Rather, our findings suggest that this meteorite originated from near the martian surface at the edge of the impact site. The shock history of NWA 8159 provides a picture of Mars consistent with that derived from remote observation; that of a random cratering process that samples a geologically long-lived and complex planet.

Original languageEnglish (US)
Pages (from-to)197-212
Number of pages16
JournalGeochimica et Cosmochimica Acta
Volume246
DOIs
StatePublished - Feb 1 2019
Externally publishedYes

Fingerprint

cratering
augite
Mars
Meteorites
basalt
Minerals
meteorite
mineral
history
Garnets
garnet
melt
shock metamorphism
ringwoodite
labradorite
stishovite
Bearings (structural)
coesite
Raman spectroscopy
petrogenesis

Keywords

  • High-pressure phases
  • Impact cratering
  • Impact metamorphism
  • Majoritic garnet
  • Martian meteorites
  • Shock veins

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Shock conditions recorded in NWA 8159 martian augite basalt with implications for the impact cratering history on Mars. / Sharp, Thomas; Walton, Erin L.; Hu, Jinping; Agee, Carl.

In: Geochimica et Cosmochimica Acta, Vol. 246, 01.02.2019, p. 197-212.

Research output: Contribution to journalArticle

@article{e51d714e07ca4a06a136bc3fa306c60d,
title = "Shock conditions recorded in NWA 8159 martian augite basalt with implications for the impact cratering history on Mars",
abstract = "NWA 8159 is an augite-rich martian basalt, formed by cooling of a relatively evolved, Ca-rich, Ti-poor and LREE-depleted lava, under relatively oxidizing conditions, during the early Amazonian. In addition to its distinct igneous petrogenesis and high fO2, NWA 8159 is also set apart from most martian shergottites with respect to the low degree of shock metamorphism required to preserve crystalline igneous plagioclase (An50–65). In this study, mineral transformations within and adjacent to shock veins in NWA 8159 were investigated using scanning electron microscopy, Raman spectroscopy and transmission electron microscopy to better constrain the unusal shock history of this meteorite. The transformation of olivine to ahrensite (Fe-ringwoodite) along shock vein margins, and tissintite and coesite formed from igneous mineral (labradorite and silica) grains entrained as clasts within shock veins has been documented in this study. We report on a previously unidentified mineral assemblage of Ca-Na-majoritic garnet, sodic-clinopyroxene and stishovite crystallized from shock melt. This mineral assemblage indicates a crystallization pressure of approximately 16 GPa, which is within the range of previous shock pressure estimates for this meteorite (15–23 GPa). The presence of a majoritic garnet-bearing assemblage throughout veins up to 0.6 mm wide indicates that the sample remained at high-pressure throughout the melt vein quench. Based on thermal models, the sample must have remained at high pressure for ∼100 ms. This shock duration is an order of magnitude longer than those experienced by more highly shocked shergottites such as Tissint or Zagami (>30 GPa; 10–20 ms) and would seem to imply a relatively large impact event. Recent numerical models demonstrate that a range of shock pressures and durations are realized by rocks within the ejected spall zone of a hypervelocity impact. The shock conditions experienced by NWA 8159 therefore do not require an impact event distinct from other shergottites. Rather, our findings suggest that this meteorite originated from near the martian surface at the edge of the impact site. The shock history of NWA 8159 provides a picture of Mars consistent with that derived from remote observation; that of a random cratering process that samples a geologically long-lived and complex planet.",
keywords = "High-pressure phases, Impact cratering, Impact metamorphism, Majoritic garnet, Martian meteorites, Shock veins",
author = "Thomas Sharp and Walton, {Erin L.} and Jinping Hu and Carl Agee",
year = "2019",
month = "2",
day = "1",
doi = "10.1016/j.gca.2018.11.014",
language = "English (US)",
volume = "246",
pages = "197--212",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Shock conditions recorded in NWA 8159 martian augite basalt with implications for the impact cratering history on Mars

AU - Sharp, Thomas

AU - Walton, Erin L.

AU - Hu, Jinping

AU - Agee, Carl

PY - 2019/2/1

Y1 - 2019/2/1

N2 - NWA 8159 is an augite-rich martian basalt, formed by cooling of a relatively evolved, Ca-rich, Ti-poor and LREE-depleted lava, under relatively oxidizing conditions, during the early Amazonian. In addition to its distinct igneous petrogenesis and high fO2, NWA 8159 is also set apart from most martian shergottites with respect to the low degree of shock metamorphism required to preserve crystalline igneous plagioclase (An50–65). In this study, mineral transformations within and adjacent to shock veins in NWA 8159 were investigated using scanning electron microscopy, Raman spectroscopy and transmission electron microscopy to better constrain the unusal shock history of this meteorite. The transformation of olivine to ahrensite (Fe-ringwoodite) along shock vein margins, and tissintite and coesite formed from igneous mineral (labradorite and silica) grains entrained as clasts within shock veins has been documented in this study. We report on a previously unidentified mineral assemblage of Ca-Na-majoritic garnet, sodic-clinopyroxene and stishovite crystallized from shock melt. This mineral assemblage indicates a crystallization pressure of approximately 16 GPa, which is within the range of previous shock pressure estimates for this meteorite (15–23 GPa). The presence of a majoritic garnet-bearing assemblage throughout veins up to 0.6 mm wide indicates that the sample remained at high-pressure throughout the melt vein quench. Based on thermal models, the sample must have remained at high pressure for ∼100 ms. This shock duration is an order of magnitude longer than those experienced by more highly shocked shergottites such as Tissint or Zagami (>30 GPa; 10–20 ms) and would seem to imply a relatively large impact event. Recent numerical models demonstrate that a range of shock pressures and durations are realized by rocks within the ejected spall zone of a hypervelocity impact. The shock conditions experienced by NWA 8159 therefore do not require an impact event distinct from other shergottites. Rather, our findings suggest that this meteorite originated from near the martian surface at the edge of the impact site. The shock history of NWA 8159 provides a picture of Mars consistent with that derived from remote observation; that of a random cratering process that samples a geologically long-lived and complex planet.

AB - NWA 8159 is an augite-rich martian basalt, formed by cooling of a relatively evolved, Ca-rich, Ti-poor and LREE-depleted lava, under relatively oxidizing conditions, during the early Amazonian. In addition to its distinct igneous petrogenesis and high fO2, NWA 8159 is also set apart from most martian shergottites with respect to the low degree of shock metamorphism required to preserve crystalline igneous plagioclase (An50–65). In this study, mineral transformations within and adjacent to shock veins in NWA 8159 were investigated using scanning electron microscopy, Raman spectroscopy and transmission electron microscopy to better constrain the unusal shock history of this meteorite. The transformation of olivine to ahrensite (Fe-ringwoodite) along shock vein margins, and tissintite and coesite formed from igneous mineral (labradorite and silica) grains entrained as clasts within shock veins has been documented in this study. We report on a previously unidentified mineral assemblage of Ca-Na-majoritic garnet, sodic-clinopyroxene and stishovite crystallized from shock melt. This mineral assemblage indicates a crystallization pressure of approximately 16 GPa, which is within the range of previous shock pressure estimates for this meteorite (15–23 GPa). The presence of a majoritic garnet-bearing assemblage throughout veins up to 0.6 mm wide indicates that the sample remained at high-pressure throughout the melt vein quench. Based on thermal models, the sample must have remained at high pressure for ∼100 ms. This shock duration is an order of magnitude longer than those experienced by more highly shocked shergottites such as Tissint or Zagami (>30 GPa; 10–20 ms) and would seem to imply a relatively large impact event. Recent numerical models demonstrate that a range of shock pressures and durations are realized by rocks within the ejected spall zone of a hypervelocity impact. The shock conditions experienced by NWA 8159 therefore do not require an impact event distinct from other shergottites. Rather, our findings suggest that this meteorite originated from near the martian surface at the edge of the impact site. The shock history of NWA 8159 provides a picture of Mars consistent with that derived from remote observation; that of a random cratering process that samples a geologically long-lived and complex planet.

KW - High-pressure phases

KW - Impact cratering

KW - Impact metamorphism

KW - Majoritic garnet

KW - Martian meteorites

KW - Shock veins

UR - http://www.scopus.com/inward/record.url?scp=85058012153&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058012153&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2018.11.014

DO - 10.1016/j.gca.2018.11.014

M3 - Article

VL - 246

SP - 197

EP - 212

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

ER -