Serpentines close-up and intimate: An HRTEM view

István Dódony, P R Buseck

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

High-resolution transmission electron microscopy (HRTEM) affords a close look at the complex structures and intergrowths of the serpentine minerals. All contain alternating sheets of cations in tetrahedral and octahedral coordination. Lizardite, the flat species, forms in sufficiently large and well-ordered crystals to permit reliable X-ray structure determinations, and it is the reference mineral for estimates of the structures of antigorite and chrysotile. However, even lizardite forms in a wide variety of polytypes, only some of which have been explored. It also forms polygonal serpentine, a roughly cylindrical variety that typically consists of 15 or 30 sectors, each of which consists of lizardite layers. HRTEM images of the structure at sector boundaries show offsets of fringes that we interpret as the result of inversions of the tetrahedral sheets. Using lizardite as the basis for an estimate of the curled chrysotile structure, we obtained atomic coordinates and used them to calculate fiber-axis X-ray and electron-diffraction patterns for polytypes. HRTEM images obtained viewing down the fiber axis show no ordering between layers. Chisholm (1988) reported 2mm symmetry for fibers when viewed perpendicular to their length, but most of our measured fibers show no symmetry for such orientations. Employing Fourier transforms of HRTEM images, we found a new one-layered orthorhombic chrysotile polytype with mirror symmetry perpendicular to the fiber axis. Antigorite is notable for its conspicuous, modulated structure. We observed the waves to be asymmetrical and infer that the asymmetry results from an inhomogeneous distribution of hydrogen bonding between the layers. This distribution helps with a long-standing problem by explaining some apparently anomalous features of HRTEM images. The abundant (001) faults in antigorite are produced by boundaries of lamellae having different modulation profiles. HRTEM images show the relations of serpentine minerals to each other as well as their host materials. Areas exist where layers of each of the serpentine minerals grade continuously and free of faults from one variety to another. The resulting intermediate or partial structures defy categorization into simple mineral types.

Original languageEnglish (US)
Pages (from-to)507-527
Number of pages21
JournalInternational Geology Review
Volume46
Issue number6
StatePublished - Jun 2004

Fingerprint

lizardite
transmission electron microscopy
antigorite
asbestos
mineral
symmetry
diffraction
Fourier transform
asymmetry
cation
fibre
hydrogen
crystal
electron
distribution

ASJC Scopus subject areas

  • Geology

Cite this

Serpentines close-up and intimate : An HRTEM view. / Dódony, István; Buseck, P R.

In: International Geology Review, Vol. 46, No. 6, 06.2004, p. 507-527.

Research output: Contribution to journalArticle

Dódony, István ; Buseck, P R. / Serpentines close-up and intimate : An HRTEM view. In: International Geology Review. 2004 ; Vol. 46, No. 6. pp. 507-527.
@article{f9a6c71ba512495d8671270a9d068c02,
title = "Serpentines close-up and intimate: An HRTEM view",
abstract = "High-resolution transmission electron microscopy (HRTEM) affords a close look at the complex structures and intergrowths of the serpentine minerals. All contain alternating sheets of cations in tetrahedral and octahedral coordination. Lizardite, the flat species, forms in sufficiently large and well-ordered crystals to permit reliable X-ray structure determinations, and it is the reference mineral for estimates of the structures of antigorite and chrysotile. However, even lizardite forms in a wide variety of polytypes, only some of which have been explored. It also forms polygonal serpentine, a roughly cylindrical variety that typically consists of 15 or 30 sectors, each of which consists of lizardite layers. HRTEM images of the structure at sector boundaries show offsets of fringes that we interpret as the result of inversions of the tetrahedral sheets. Using lizardite as the basis for an estimate of the curled chrysotile structure, we obtained atomic coordinates and used them to calculate fiber-axis X-ray and electron-diffraction patterns for polytypes. HRTEM images obtained viewing down the fiber axis show no ordering between layers. Chisholm (1988) reported 2mm symmetry for fibers when viewed perpendicular to their length, but most of our measured fibers show no symmetry for such orientations. Employing Fourier transforms of HRTEM images, we found a new one-layered orthorhombic chrysotile polytype with mirror symmetry perpendicular to the fiber axis. Antigorite is notable for its conspicuous, modulated structure. We observed the waves to be asymmetrical and infer that the asymmetry results from an inhomogeneous distribution of hydrogen bonding between the layers. This distribution helps with a long-standing problem by explaining some apparently anomalous features of HRTEM images. The abundant (001) faults in antigorite are produced by boundaries of lamellae having different modulation profiles. HRTEM images show the relations of serpentine minerals to each other as well as their host materials. Areas exist where layers of each of the serpentine minerals grade continuously and free of faults from one variety to another. The resulting intermediate or partial structures defy categorization into simple mineral types.",
author = "Istv{\'a}n D{\'o}dony and Buseck, {P R}",
year = "2004",
month = "6",
language = "English (US)",
volume = "46",
pages = "507--527",
journal = "International Geology Review",
issn = "0020-6814",
publisher = "Bellwether Publishing, Ltd.",
number = "6",

}

TY - JOUR

T1 - Serpentines close-up and intimate

T2 - An HRTEM view

AU - Dódony, István

AU - Buseck, P R

PY - 2004/6

Y1 - 2004/6

N2 - High-resolution transmission electron microscopy (HRTEM) affords a close look at the complex structures and intergrowths of the serpentine minerals. All contain alternating sheets of cations in tetrahedral and octahedral coordination. Lizardite, the flat species, forms in sufficiently large and well-ordered crystals to permit reliable X-ray structure determinations, and it is the reference mineral for estimates of the structures of antigorite and chrysotile. However, even lizardite forms in a wide variety of polytypes, only some of which have been explored. It also forms polygonal serpentine, a roughly cylindrical variety that typically consists of 15 or 30 sectors, each of which consists of lizardite layers. HRTEM images of the structure at sector boundaries show offsets of fringes that we interpret as the result of inversions of the tetrahedral sheets. Using lizardite as the basis for an estimate of the curled chrysotile structure, we obtained atomic coordinates and used them to calculate fiber-axis X-ray and electron-diffraction patterns for polytypes. HRTEM images obtained viewing down the fiber axis show no ordering between layers. Chisholm (1988) reported 2mm symmetry for fibers when viewed perpendicular to their length, but most of our measured fibers show no symmetry for such orientations. Employing Fourier transforms of HRTEM images, we found a new one-layered orthorhombic chrysotile polytype with mirror symmetry perpendicular to the fiber axis. Antigorite is notable for its conspicuous, modulated structure. We observed the waves to be asymmetrical and infer that the asymmetry results from an inhomogeneous distribution of hydrogen bonding between the layers. This distribution helps with a long-standing problem by explaining some apparently anomalous features of HRTEM images. The abundant (001) faults in antigorite are produced by boundaries of lamellae having different modulation profiles. HRTEM images show the relations of serpentine minerals to each other as well as their host materials. Areas exist where layers of each of the serpentine minerals grade continuously and free of faults from one variety to another. The resulting intermediate or partial structures defy categorization into simple mineral types.

AB - High-resolution transmission electron microscopy (HRTEM) affords a close look at the complex structures and intergrowths of the serpentine minerals. All contain alternating sheets of cations in tetrahedral and octahedral coordination. Lizardite, the flat species, forms in sufficiently large and well-ordered crystals to permit reliable X-ray structure determinations, and it is the reference mineral for estimates of the structures of antigorite and chrysotile. However, even lizardite forms in a wide variety of polytypes, only some of which have been explored. It also forms polygonal serpentine, a roughly cylindrical variety that typically consists of 15 or 30 sectors, each of which consists of lizardite layers. HRTEM images of the structure at sector boundaries show offsets of fringes that we interpret as the result of inversions of the tetrahedral sheets. Using lizardite as the basis for an estimate of the curled chrysotile structure, we obtained atomic coordinates and used them to calculate fiber-axis X-ray and electron-diffraction patterns for polytypes. HRTEM images obtained viewing down the fiber axis show no ordering between layers. Chisholm (1988) reported 2mm symmetry for fibers when viewed perpendicular to their length, but most of our measured fibers show no symmetry for such orientations. Employing Fourier transforms of HRTEM images, we found a new one-layered orthorhombic chrysotile polytype with mirror symmetry perpendicular to the fiber axis. Antigorite is notable for its conspicuous, modulated structure. We observed the waves to be asymmetrical and infer that the asymmetry results from an inhomogeneous distribution of hydrogen bonding between the layers. This distribution helps with a long-standing problem by explaining some apparently anomalous features of HRTEM images. The abundant (001) faults in antigorite are produced by boundaries of lamellae having different modulation profiles. HRTEM images show the relations of serpentine minerals to each other as well as their host materials. Areas exist where layers of each of the serpentine minerals grade continuously and free of faults from one variety to another. The resulting intermediate or partial structures defy categorization into simple mineral types.

UR - http://www.scopus.com/inward/record.url?scp=3543051156&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3543051156&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:3543051156

VL - 46

SP - 507

EP - 527

JO - International Geology Review

JF - International Geology Review

SN - 0020-6814

IS - 6

ER -