Sensitivity of fit indices to misspecification in growth curve models

Wei Wu, Stephen West

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of approximation, standardized root mean square residual, comparative fit index, and Tucker-Lewis Index. The fit indices were found to have differential sensitivity to different types of misspecification in either the mean or covariance structures with severity of misspecification controlled. No fit index was always more (or less) sensitive to misspecification in the marginal mean structure relative to those in the covariance structure. Specifying the covariance structure to be saturated can substantially improve the sensitivity of fit indices to misspecification in the marginal mean structure; this result might help identify the sources of specification error in a growth curve model. An empirical example of children's growth in math achievement (Wu, West, & Hughes, 2008) was used to illustrate the results.

Original languageEnglish (US)
Pages (from-to)420-452
Number of pages33
JournalMultivariate Behavioral Research
Volume45
Issue number3
DOIs
StatePublished - May 1 2010

ASJC Scopus subject areas

  • Statistics and Probability
  • Experimental and Cognitive Psychology
  • Arts and Humanities (miscellaneous)

Fingerprint Dive into the research topics of 'Sensitivity of fit indices to misspecification in growth curve models'. Together they form a unique fingerprint.

  • Cite this