Semiconductor-bonded III-V multijunction space solar cells

Daniel C. Law, D. M. Bhusari, S. Mesropian, J. C. Boisvert, W. D. Hong, A. Boca, D. C. Larrabee, C. M. Fetzer, R. R. King, N. H. Karam

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

Boeing-Spectrolab recently demonstrated monolithic 5-junction space solar cells using direct semiconductor-bonding technique. The direct-bonded 5-junction cells consist of (Al)GaInP, AlGa(In)As, Ga(In)As, GaInPAs, and GaIn(P)As subcells deposited on GaAs or Ge and InP substrates. Large-area, high-mechanical strength, and low-electrical resistance direct-bonded interface was achieved to support the high-efficiency solar cell structure. Preliminary 1-sun AM0 testing of the 5-junction cells showed encouraging results. One of the direct-bonded solar cell achieved an open-circuit-voltage of 4.7V, a short-circuit current-density of 11.7 mA/cm2, a fill factor of 0.79, and an efficiency of 31.7%. Spectral response measurement of the five-junction cell revealed excellent external quantum efficiency performance for each subcell and across the direct-bonded interface. Improvements in crystal growth and current density allocation among subcells can further raise the 1-sun, AM0 conversion efficiency of the direct-bonded 5-junction cell to 35 - 40%.

Original languageEnglish (US)
Title of host publication2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Pages2237-2239
Number of pages3
DOIs
StatePublished - Dec 1 2009
Externally publishedYes
Event2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States
Duration: Jun 7 2009Jun 12 2009

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Other

Other2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
CountryUnited States
CityPhiladelphia, PA
Period6/7/096/12/09

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Semiconductor-bonded III-V multijunction space solar cells'. Together they form a unique fingerprint.

Cite this