Seismostratigraphy and thermal structure of earth's core-mantle boundary region

R. D. Van Der Hilst, M. V. De Hoop, P. Wang, S. H. Shim, P. Ma, L. Tenorio

Research output: Contribution to journalArticlepeer-review

240 Scopus citations

Abstract

We used three-dimensional inverse scattering of core-reflected shear waves for large-scale, high-resolution exploration of Earth's deep interior (D″) and detected multiple, piecewise continuous interfaces in the lowermost layer (D″) beneath Central and North America. With thermodynamic properties of phase transitions in mantle silicates, we interpret the images and estimate in situ temperatures. A widespread wave-speed increase at 150 to 300 kilometers above the core-mantle boundary is consistent with a transition from perovskite to postperovskite. Internal D″ stratification may be due to multiple phase-boundary crossings, and a deep wave-speed reduction may mark the base of a postperovskite lens about 2300 kilometers wide and 250 kilometers thick. The core-mantle boundary temperature is estimated at 3950 ± 200 kelvin. Beneath Central America, a site of deep subduction, the D″ is relatively cold (ΔT = 700 ± 100 kelvin). Accounting for a factor-of-two uncertainty in thermal conductivity, core heat flux is 80 to 160 milliwatts per square meter (mW m-2) into the coldest D″ region and 35 to 70 mW m-2 away from it. Combined with estimates from the central Pacific, this suggests a global average of 50 to 100 mW m-2 and a total heat loss of 7.5 to 15 terawatts.

Original languageEnglish (US)
Pages (from-to)1813-1817
Number of pages5
JournalScience
Volume315
Issue number5820
DOIs
StatePublished - Mar 30 2007
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Seismostratigraphy and thermal structure of earth's core-mantle boundary region'. Together they form a unique fingerprint.

Cite this