Seismic evidence for Earth's crusty deep mantle

Daniel A. Frost, Sebastian Rost, Edward Garnero, Mingming Li

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Seismic tomography resolves anomalies interpreted as oceanic lithosphere subducted deep into Earth's lower mantle. However, the fate of the compositionally distinct oceanic crust that is part of the lithosphere is poorly constrained but provides important constraints on mixing processes and the recycling process in the deep Earth. We present high-resolution seismic array analyses of anomalous P-waves sampling the deep mantle, and deterministically locate heterogeneities in the lowermost 300 km of the mantle. Spectral analysis indicates that the dominant scale length of the heterogeneity is 4 to 7 km. The heterogeneity distribution varies laterally and radially and heterogeneities are more abundant near the margins of the lowermost mantle Large Low Velocity Provinces (LLVPs), consistent with mantle convection simulations that show elevated accumulations of deeply advected crustal material near the boundaries of thermo-chemical piles. The size and distribution of the observed heterogeneities is consistent with that expected for subducted oceanic crust. These results thus suggest the deep mantle contains an imprint of continued subduction of oceanic crust, stirred by mantle convection and modulated by long lasting thermo-chemical structures. The preferred location of the heterogeneity in the lowermost mantle is consistent with a thermo-chemical origin of the LLVPs. Our observations relate to the mixing behaviour of small length-scale heterogeneity in the deep Earth and indicate that compositional heterogeneities from the subduction process can survive for extended times in the lowermost mantle.

Original languageEnglish (US)
Pages (from-to)54-63
Number of pages10
JournalEarth and Planetary Science Letters
Volume470
DOIs
StatePublished - Jul 15 2017

Keywords

  • deep Earth
  • mantle dynamics
  • mantle structure
  • scattering
  • seismic arrays
  • seismology

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Seismic evidence for Earth's crusty deep mantle'. Together they form a unique fingerprint.

Cite this