Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers

Anjali Mulchandani, Justin Edberg, Pierre Herckes, Paul Westerhoff

Research output: Contribution to journalArticlepeer-review

Abstract

Atmospheric water harvesting (AWH) is an emerging technology for decentralized water supply and is proving to be viable for use in emergencies, military deployment, and sustainable industries. The atmosphere is a freshwater reservoir that contains 12,900 km3 of water, 6-fold more than the volume of global rivers. Dehumidification water harvesting technologies can be powered by solar, wind, or electric sources. Compressor/refrigerant-based dehumidifiers operate via dew point condensation and provide a cold surface upon which water vapor can condense. Conversely, desiccant-based technologies saturate water vapor using a sorbent that is then heated, and the supersaturated water vapor condenses on a surface when interacting with cooler ambient process air. This work compares productivity, energy consumption, efficiency, cost and quality of water produced of two water-harvesting mechanisms. Electric-powered compressor and desiccant dehumidifiers were operated outdoors for more than one year in the arid southwestern USA, where temperatures ranged from 3.1 to 43.7 °C and relative humidity (RH) ranged from 6 to 85%. The compressor system harvested >2-fold more water than the desiccant system when average RH during the run cycle was >30%, average temperature was >20 °C, and average dew point temperature was >5 °C. Desiccant systems performed more favorably when average RH during the run cycle was <30%, average temperature was <20 °C, and average dew point temperature was <5 °C. Water collected by compressor-based technologies had conductivity up to 180 μS/cm, turbidity up to 190 NTU, and aluminum, iron and manganese near or above the US EPA secondary drinking water standard. Dissolved organic carbon (DOC) averaged <2 mg C/L but ranged up to 12 mg C/L. Water collected by desiccant-based technologies had significantly lower conductivity, metals, and turbidity, and DOC was always <6 mg/L. Aldehydes such as formaldehyde and acetaldehyde and carboxylic acids such as formic acid and acetic acid were primary contributors to DOC. The differences in harvested water quality were attributed to differences in the condensation method between compressor and desiccant AWH technologies. Multiple strategies could be employed to prevent these volatile organic compounds (VOCs) from contributing to DOC in harvested water, such as pretreating air to remove VOCs or post-treating DOC in harvested liquid water.

Original languageEnglish (US)
Article number153966
JournalScience of the Total Environment
Volume825
DOIs
StatePublished - Jun 15 2022

Keywords

  • Air quality
  • Atmosphere
  • Drinking water
  • Energy efficiency
  • Potable
  • Power
  • Specific energy consumption
  • Water production

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers'. Together they form a unique fingerprint.

Cite this