SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis

Fei Gao, Teresa Wu, Jing Li, Bin Zheng, Lingxiang Ruan, Desheng Shang, Bhavika Patel

Research output: Contribution to journalArticle

26 Scopus citations

Abstract

Breast cancer is the second leading cause of cancer death among women worldwide. Nevertheless, it is also one of the most treatable malignances if detected early. Screening for breast cancer with full field digital mammography (FFDM) has been widely used. However, it demonstrates limited performance for women with dense breasts. An emerging technology in the field is contrast-enhanced digital mammography (CEDM), which includes a low energy (LE) image similar to FFDM, and a recombined image leveraging tumor neoangiogenesis similar to breast magnetic resonance imaging (MRI). CEDM has shown better diagnostic accuracy than FFDM. While promising, CEDM is not yet widely available across medical centers. In this research, we propose a Shallow-Deep Convolutional Neural Network (SD-CNN) where a shallow CNN is developed to derive “virtual” recombined images from LE images, and a deep CNN is employed to extract novel features from LE, recombined or “virtual” recombined images for ensemble models to classify the cases as benign vs. cancer. To evaluate the validity of our approach, we first develop a deep-CNN using 49 CEDM cases collected from Mayo Clinic to prove the contributions from recombined images for improved breast cancer diagnosis (0.85 in accuracy, 0.84 in AUC using LE imaging vs. 0.89 in accuracy, 0.91 in AUC using both LE and recombined imaging). We then develop a shallow-CNN using the same 49 CEDM cases to learn the nonlinear mapping from LE to recombined images. Next, we use 89 FFDM cases from INbreast, a public database to generate “virtual” recombined images. Using FFDM alone provides 0.84 in accuracy (AUC = 0.87), whereas SD-CNN improves the diagnostic accuracy to 0.90 (AUC = 0.92).

Original languageEnglish (US)
Pages (from-to)53-62
Number of pages10
JournalComputerized Medical Imaging and Graphics
Volume70
DOIs
StatePublished - Dec 1 2018

Keywords

  • Breast tumor
  • CEDM
  • Classification
  • Deep learning
  • Digital mammography
  • Image synthesis

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis'. Together they form a unique fingerprint.

  • Cite this