Safe Navigation in Human Occupied Environments Using Sampling and Control Barrier Functions

Keyvan Majd, Shakiba Yaghoubi, Tomoya Yamaguchi, Bardh Hoxha, Danil Prokhorov, Georgios Fainekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Sampling-based methods such as Rapidly-exploring Random Trees (RRTs) have been widely used for generating motion paths for autonomous mobile systems. In this work, we extend time-based RRTs with Control Barrier Functions (CBFs) to generate, safe motion plans in dynamic environments with many pedestrians. Our framework is based upon a human motion prediction model which is well suited for indoor narrow environments. We demonstrate our approach on a high-fidelity model of the Toyota Human Support Robot navigating in narrow corridors. We show in simulation results that our proposed online method can navigate safely in the presence of moving agents with unknown dynamics.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5794-5800
Number of pages7
ISBN (Electronic)9781665417143
DOIs
StatePublished - 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: Sep 27 2021Oct 1 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period9/27/2110/1/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Safe Navigation in Human Occupied Environments Using Sampling and Control Barrier Functions'. Together they form a unique fingerprint.

Cite this