Role of structure sizes in determining the characteristics of the resonant tunneling diode

N. C. Kluksdahl, A. M. Kriman, D. K. Ferry

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Using the Wigner function formalism, we study the effects of structural parameters on the DC I-V characteristics and on the large-signal transient response of the resonant tunneling diode. We model two types of structures of GaAs/AlxGa1-xAs; first, with symmetric barriers ranging from 3 to 8 nanometers in thickness separated by a 5 nanometer well, and second with a well varying from 3 to 8 nanometers between 3 nanometer barriers. Experimental variation of the barrier thickness and height changes the peak-to-valley ratio in the I-V curve, as predicted by elementary models of tunneling structures. This stems directly from the changes in tunneling probabilities. For the DC studies, we show that the peak-to-valley ratio in the I-V curve is a function of the resonance width, which depends both on the well and barrier thickness. The location of the peak on the I-V curve depends on the location of the resonant energy, which is a function of the well width. Transient switching behavior is compared to earlier numerical studies of tunneling times of wave packets. Charge storage stabilizes the position of the resonant state, thus damping the transients. Consequently, wider barriers yield faster transient settling times, in agreement with the tunneling time results which predicted longer charge storage times for thicker barriers.

Original languageEnglish (US)
Pages (from-to)1273-1276
Number of pages4
JournalSolid State Electronics
Volume32
Issue number12
DOIs
StatePublished - Dec 1989

Keywords

  • Wigner function
  • resonant tunneling diode

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Role of structure sizes in determining the characteristics of the resonant tunneling diode'. Together they form a unique fingerprint.

  • Cite this