Rigidity theory for C∗-dynamical systems and the “Pedersen rigidity problem”

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let (Formula presented.) be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of (Formula presented.) on (Formula presented.)-algebras (Formula presented.) and (Formula presented.) are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for the dual actions and preserves the images of (Formula presented.) and (Formula presented.) in the multiplier algebras of the crossed products. The rigidity problem discussed in this paper deals with the necessity of the last condition concerning the images of (Formula presented.) and (Formula presented.). There is an alternative formulation of the problem: an action of the dual group (Formula presented.) together with a suitably equivariant unitary homomorphism of (Formula presented.) give rise to a generalized fixed-point algebra via Landstad’s theorem, and a problem related to the above is to produce an action of (Formula presented.) and two such equivariant unitary homomorphisms of (Formula presented.) that give distinct generalized fixed-point algebras. We present several situations where the condition on the images of (Formula presented.) and (Formula presented.) is redundant, and where having distinct generalized fixed-point algebras is impossible. For example, if (Formula presented.) is discrete, this will be the case for all actions of (Formula presented.).

Original languageEnglish (US)
JournalInternational Journal of Mathematics
DOIs
StateAccepted/In press - Feb 28 2018

Fingerprint

C*-dynamical System
Rigidity
Equivariant
Algebra
Crossed Product
Fixed point
Multiplier Algebra
Distinct
Dual Group
Locally Compact Abelian Group

Keywords

  • Action
  • crossed-product
  • exterior equivalence
  • generalized fixed-point algebra
  • outer conjugacy

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

@article{8ee7661523f34e52960ad7b2df8868a3,
title = "Rigidity theory for C∗-dynamical systems and the “Pedersen rigidity problem”",
abstract = "Let (Formula presented.) be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of (Formula presented.) on (Formula presented.)-algebras (Formula presented.) and (Formula presented.) are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for the dual actions and preserves the images of (Formula presented.) and (Formula presented.) in the multiplier algebras of the crossed products. The rigidity problem discussed in this paper deals with the necessity of the last condition concerning the images of (Formula presented.) and (Formula presented.). There is an alternative formulation of the problem: an action of the dual group (Formula presented.) together with a suitably equivariant unitary homomorphism of (Formula presented.) give rise to a generalized fixed-point algebra via Landstad’s theorem, and a problem related to the above is to produce an action of (Formula presented.) and two such equivariant unitary homomorphisms of (Formula presented.) that give distinct generalized fixed-point algebras. We present several situations where the condition on the images of (Formula presented.) and (Formula presented.) is redundant, and where having distinct generalized fixed-point algebras is impossible. For example, if (Formula presented.) is discrete, this will be the case for all actions of (Formula presented.).",
keywords = "Action, crossed-product, exterior equivalence, generalized fixed-point algebra, outer conjugacy",
author = "Steven Kaliszewski and Tron Omland and John Quigg",
year = "2018",
month = "2",
day = "28",
doi = "10.1142/S0129167X18500167",
language = "English (US)",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "World Scientific Publishing Co. Pte Ltd",

}

TY - JOUR

T1 - Rigidity theory for C∗-dynamical systems and the “Pedersen rigidity problem”

AU - Kaliszewski, Steven

AU - Omland, Tron

AU - Quigg, John

PY - 2018/2/28

Y1 - 2018/2/28

N2 - Let (Formula presented.) be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of (Formula presented.) on (Formula presented.)-algebras (Formula presented.) and (Formula presented.) are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for the dual actions and preserves the images of (Formula presented.) and (Formula presented.) in the multiplier algebras of the crossed products. The rigidity problem discussed in this paper deals with the necessity of the last condition concerning the images of (Formula presented.) and (Formula presented.). There is an alternative formulation of the problem: an action of the dual group (Formula presented.) together with a suitably equivariant unitary homomorphism of (Formula presented.) give rise to a generalized fixed-point algebra via Landstad’s theorem, and a problem related to the above is to produce an action of (Formula presented.) and two such equivariant unitary homomorphisms of (Formula presented.) that give distinct generalized fixed-point algebras. We present several situations where the condition on the images of (Formula presented.) and (Formula presented.) is redundant, and where having distinct generalized fixed-point algebras is impossible. For example, if (Formula presented.) is discrete, this will be the case for all actions of (Formula presented.).

AB - Let (Formula presented.) be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of (Formula presented.) on (Formula presented.)-algebras (Formula presented.) and (Formula presented.) are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for the dual actions and preserves the images of (Formula presented.) and (Formula presented.) in the multiplier algebras of the crossed products. The rigidity problem discussed in this paper deals with the necessity of the last condition concerning the images of (Formula presented.) and (Formula presented.). There is an alternative formulation of the problem: an action of the dual group (Formula presented.) together with a suitably equivariant unitary homomorphism of (Formula presented.) give rise to a generalized fixed-point algebra via Landstad’s theorem, and a problem related to the above is to produce an action of (Formula presented.) and two such equivariant unitary homomorphisms of (Formula presented.) that give distinct generalized fixed-point algebras. We present several situations where the condition on the images of (Formula presented.) and (Formula presented.) is redundant, and where having distinct generalized fixed-point algebras is impossible. For example, if (Formula presented.) is discrete, this will be the case for all actions of (Formula presented.).

KW - Action

KW - crossed-product

KW - exterior equivalence

KW - generalized fixed-point algebra

KW - outer conjugacy

UR - http://www.scopus.com/inward/record.url?scp=85042748294&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042748294&partnerID=8YFLogxK

U2 - 10.1142/S0129167X18500167

DO - 10.1142/S0129167X18500167

M3 - Article

AN - SCOPUS:85042748294

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

ER -