Reactivity of Chlorine Radicals (Cland Cl2•-) with Dissolved Organic Matter and the Formation of Chlorinated Byproducts

Yu Lei, Xin Lei, Paul Westerhoff, Xinran Zhang, Xin Yang

Research output: Contribution to journalArticlepeer-review

124 Scopus citations

Abstract

Chlorine radicals, including Cl• and Cl2•-, can be produced in sunlight waters (rivers, oceans, and lakes) or water treatment processes (e.g., electrochemical and advanced oxidation processes). Dissolved organic matter (DOM) is a major reactant with, or a scavenger of, Cl• and Cl2•- in water, but limited quantitative information exists regarding the influence of DOM structure on its reactivity with Cl• and Cl2•-. This study aimed at quantifying the reaction rates and the formation of chlorinated organic byproducts produced from Cl• and Cl2•- reactions with DOM. Laser flash photolysis experiments were conducted to quantify the second-order reaction rate constants of 19 DOM isolates with Cl• (kDOM-Cl•) and Cl2•- (kDOM-Cl2•-), and compare those with the hydroxyl radical rate constants (kDOM-•OH). The values for kDOM-Cl• ((3.71 ± 0.34) × 108 to (1.52 ± 1.56) × 109 MC-1 s-1) were orders of magnitude greater than the kDOM-Cl2•- values ((4.60 ± 0.90) × 106 to (3.57 ± 0.53) × 107 MC-1 s-1). kDOM-Cl• negatively correlated with the weight-averaged molecular weight (MW) due to the diffusion-controlled reactions. DOM with high aromaticity and total antioxidant capacity tended to react faster with Cl2•-. During the same experiments, we also monitored the formation of chlorinated byproducts through the evolution of total organic chlorine (TOCl) as a function of chlorine radical oxidant exposure (CT value). Maximum TOCl occurred at a CT of 4-8 × 10-12 M·s for Cl• and 1.1-2.2 × 10-10 M·s for Cl2•-. These results signify the importance of DOM in scavenging chlorine radicals and the potential risks of producing chlorinated byproducts of unknown toxicity.

Original languageEnglish (US)
Pages (from-to)689-699
Number of pages11
JournalEnvironmental Science and Technology
Volume55
Issue number1
DOIs
StatePublished - Jan 5 2021

Keywords

  • chlorinated byproducts
  • chlorine radicals
  • dissolved organic matter
  • reaction rate constants

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Reactivity of Chlorine Radicals (Cland Cl2•-) with Dissolved Organic Matter and the Formation of Chlorinated Byproducts'. Together they form a unique fingerprint.

Cite this