Abstract

Waveform design that allows for a wide variety of chirps has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution (DE) to design cubic chirps with coefficients constrained to the three-dimensional (3D) unit sphere. Nonlinear functions sufficiently approximated by a third order Maclaurin series can be represented in this chirp space. Cascaded integrator methods for generating polynomial chirps allow for practical implementation in real world systems. While simplified tracking models and finite waveform dictionaries have information theoretic results, we explore two-dimensional (2D) tracking continuous waveform design in cluttered environments.

Original languageEnglish (US)
Title of host publicationConference Record of the 48th Asilomar Conference on Signals, Systems and Computers
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages2032-2036
Number of pages5
ISBN (Electronic)9781479982974
DOIs
StatePublished - Apr 24 2015
Event48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 - Pacific Grove, United States
Duration: Nov 2 2014Nov 5 2014

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2015-April
ISSN (Print)1058-6393

Other

Other48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015
CountryUnited States
CityPacific Grove
Period11/2/1411/5/14

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'Radar tracking waveform design in continuous space and optimization selection using differential evolution'. Together they form a unique fingerprint.

Cite this