QX factorization of centrosymmetric matrices

A. Steele, J. Yalim, Bruno Welfert

Research output: Contribution to journalArticle

Abstract

We show how the factorization A=QX, introduced in Burnik (2015) [2], of a real centrosymmetric m×n matrix A into a centrosymmetric orthogonal m×m matrix Q and a centrosymmetric m×n matrix X with a double-cone structure can be directly obtained via standard QR factorizations of two matrices about half the size of A. Examples and a MATLAB code are included.

Original languageEnglish (US)
JournalApplied Numerical Mathematics
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Centrosymmetric Matrix
Factorization
QR Factorization
Q-matrix
MATLAB
Cone
Cones

Keywords

  • Centrosymmetry
  • QR factorization

ASJC Scopus subject areas

  • Numerical Analysis
  • Computational Mathematics
  • Applied Mathematics

Cite this

QX factorization of centrosymmetric matrices. / Steele, A.; Yalim, J.; Welfert, Bruno.

In: Applied Numerical Mathematics, 01.01.2018.

Research output: Contribution to journalArticle

@article{28a98f9dbde647b6963a2a23d7b12e98,
title = "QX factorization of centrosymmetric matrices",
abstract = "We show how the factorization A=QX, introduced in Burnik (2015) [2], of a real centrosymmetric m×n matrix A into a centrosymmetric orthogonal m×m matrix Q and a centrosymmetric m×n matrix X with a double-cone structure can be directly obtained via standard QR factorizations of two matrices about half the size of A. Examples and a MATLAB code are included.",
keywords = "Centrosymmetry, QR factorization",
author = "A. Steele and J. Yalim and Bruno Welfert",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.apnum.2018.06.006",
language = "English (US)",
journal = "Applied Numerical Mathematics",
issn = "0168-9274",
publisher = "Elsevier",

}

TY - JOUR

T1 - QX factorization of centrosymmetric matrices

AU - Steele, A.

AU - Yalim, J.

AU - Welfert, Bruno

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We show how the factorization A=QX, introduced in Burnik (2015) [2], of a real centrosymmetric m×n matrix A into a centrosymmetric orthogonal m×m matrix Q and a centrosymmetric m×n matrix X with a double-cone structure can be directly obtained via standard QR factorizations of two matrices about half the size of A. Examples and a MATLAB code are included.

AB - We show how the factorization A=QX, introduced in Burnik (2015) [2], of a real centrosymmetric m×n matrix A into a centrosymmetric orthogonal m×m matrix Q and a centrosymmetric m×n matrix X with a double-cone structure can be directly obtained via standard QR factorizations of two matrices about half the size of A. Examples and a MATLAB code are included.

KW - Centrosymmetry

KW - QR factorization

UR - http://www.scopus.com/inward/record.url?scp=85049323521&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049323521&partnerID=8YFLogxK

U2 - 10.1016/j.apnum.2018.06.006

DO - 10.1016/j.apnum.2018.06.006

M3 - Article

AN - SCOPUS:85049323521

JO - Applied Numerical Mathematics

JF - Applied Numerical Mathematics

SN - 0168-9274

ER -